future timeline technology singularity humanity
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

21st century

22nd century

The Far Future



2000s | 2010s | 2020s | 2030s | 2040s | 2050s | 2060s | 2070s | 2080s | 2090s

2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039

2035 timeline contents




The Very Large Hadron Collider is operational

By smashing particles together in high-energy collisions, it is possible to recreate the conditions in the earliest moments of the universe. The higher the energy, the further back in time researchers can simulate, and the more likely it is that exotic interactions will be observed.

The Large Hadron Collider (LHC) was built by the European Organisation for Nuclear Research (CERN) from 1998 until 2008. Described as "one of the great engineering milestones of mankind", it allowed physicists to test the predictions of different theories of particle physics and high-energy physics – and most importantly, to prove or disprove the existence of the long-theorised Higgs Boson, as well as the large family of new particles predicted by supersymmetric theories.

The Higgs was confirmed by data from the LHC in 2013, and in subsequent decades the LHC would continue to address many unsolved questions, improving knowledge of physical laws. An upgrade was completed in 2015, doubling its energy from 3.5 to 7 tera-electronvolts (7 TeV) per beam. A further performance boost in the 2020s increased the luminosity of the machine by a factor of 10 – providing a better chance to see rare processes and improving statistically marginal measurements.

The Very Large Hadron Collider (VLHC) is the successor to the Large Hadron Collider (LHC).* The detailed design and location choice were finalised in the mid-2020s, with construction taking a decade after that. With a tunnel measuring 60 miles (100 km), the VLHC is by far the largest particle accelerator ever built, dwarfing the LHC. Reaching from the Jura mountains in the west, to the Alps in the east, its diameter is so huge that it requires excavation under Lake Geneva. Its collision energy is over 50 tera-electronvolts (50 TeV) per beam, more than seven times that of its predecessor.*

The VLHC leads to a revolution in particle physics – vastly improving our knowledge of dark matter, dark energy, string theory and supersymmetry (the latter is a theory that suggests a second, "superpartner" may be coupled to each and every Higgs boson). New information is gleaned on the structure and nature of extra dimensions and how these influence the universe, giving credence to theories beyond the Standard Model.*

Longer term, the VLHC helps in the development of picotechnology enabling new applications at scales that are orders of magnitude smaller than nanotechnology.* Particle accelerators continue to grow in size and power, eventually becoming too large for Earth to support them and requiring space-based locations. By the middle of the 4th millennium, the very earliest moment of the Big Bang can be simulated, demonstrating a state known as the Grand Unification Energy, in which fundamental forces are united into a single force.*


very large hadron collider vlhc
Map of the Very Large Hadron Collider (VLHC) and its location compared to the Large Hadron Collider (LHC). Credit: CERN




The first definitive evidence of life beyond Earth

During this period, the number of confirmed exoplanets (i.e. planets around stars beyond our Solar System) begins to reach into the millions. The first exoplanet was announced in 1988 and a total of 50 had been catalogued by the year 2000. The rate of discovery began to accelerate dramatically following the launch of the Kepler Space Telescope in 2009, which uncovered thousands of new worlds, including 20 of two Earth sizes or less and in habitable zones. These were in addition to those found by ground-based observatories.

Many more planet-hunting missions would follow in the years and decades ahead. Each new generation of telescopes brought orders of magnitude improvements in sensitivity, resolution and computational abilities. Most of the earliest discoveries had been so-called "hot Jupiters" – gas giants in extremely close proximity to their parent star. In subsequent decades, however, much smaller candidates were capable of being identified and seen at greater distances in their systems. Eventually it was possible to determine the atmospheric compositions and even weather patterns on these unimaginably distant worlds, 10 billion times dimmer than the stars they orbited. By 2040, optics were so powerful that continent-sized features on terrestrial exoplanets were being directly imaged and mapped.*

Not only were these highly detailed scans emerging, vast numbers of them were being generated. Like many areas of technology, space observatories were advancing exponentially in terms of raw data. Moreover, their results were increasingly interpreted, not by humans, but by AI software algorithms – using new and ever more sophisticated methods to recognise patterns, avoid the "false positives" and spot the proverbial needle in the haystack.


alien life beyond Earth 2035 2040 2045 future space telescopes exoplanets


Some of the criteria for evaluating candidate planetary biosignatures included the presence of liquid water, oxygen, complex organic molecules, the ratio of certain chemicals like hydrogen and methane, and changes in the surface or atmosphere that could not be explained by abiotic (non-living) processes. Based on these various observations and datasets, researchers could form categories for gaseous, surface, or temporal biosignatures. For example, oxygen might be detected in sufficient amounts to be the waste product of photosynthetic organisms, while an exoplanet's colour might give away the presence of vegetation pigments. Meanwhile, carbon dioxide (CO2) levels that varied in a way resembling Earth's Keeling curve* might also suggest a carbon cycle influenced by life.*

For many years, candidate planets had been observed with only one, or at most a few, of these biosignatures. Although interesting from a scientific and observational point of view, they lacked the weight of evidence required to prove the existence of life. During the late 2030s and early 2040s, however, the sheer volume of data being acquired by telescopes, combined with revolutionary new ways of analysing the results, leads to a profound discovery. The first definitive evidence of life beyond Earth is uncovered during this period** with high levels of confidence based on a large and varied body of mutually supporting research. While some are cautiously sceptical initially, the observations are verified over and over again, to leave most people in little doubt that something incredibly special and unique has been found.

The discovery of life on another world has enormous cultural impact, and even religious implications for many people. It is one of the biggest and most significant historical milestones of the 21st century, if not the millennium, reshaping the zeitgeist in numerous ways. One of the most obvious benefits is an immediate boost in support for space exploration funding, which helps in part to justify the crewed missions to Mars and the Moon that are coinciding around this time.

Earlier studies had attempted to constrain the parameters of the famous Drake Equation and these suggested that primitive life was relatively common in our region of the galaxy.*** Indeed, many more planets with life are found in subsequent years. Later in the 21st century, however, the rate of exoplanet discovery begins to slow as most of the "low hanging fruit" in our galactic neighbourhood has been catalogued. The remaining candidates are to be found primarily in the core regions and beyond. These are much harder to observe, due to the combined brightness and density of so many stars in the galactic centre.


future exoplanet biosignatures




The final collapse of the European Union

Rising global temperatures are beginning to markedly increase both the frequency and severity of climate disasters. Europe is now experiencing a wave of major political unrest, the already fragile alliance having split along north-south lines.*

Britain has withdrawn from the EU entirely, focussing on its own domestic ambitions that include self-sufficiency in food production. The EU has been reorganised as a "Northern Union" – which includes France, Benelux, Germany, the Scandinavian countries and Poland. This has now split away from the southern nations, closing its borders to them after struggling to contain a surge in migration.

The famine-stricken Mediterranean has been overrun by refugees from even harder-hit nations in North Africa. Many refugees have died attempting to cross the sea in makeshift boats. Russia, meanwhile, is benefiting from its new-found status as a food superpower.


2030 2030s global warming migration



Russia is a global food superpower

With a population inching towards 9 billion, the world now requires over 50% more food than it did at the beginning of the century.* At the same time, however, many regions are faced with peak phosphorous* and the effects of climate change which are beginning to accelerate.*

Africa's Sahel region – which transitions between the Sahara in the north and Sudanian Savannas in the south – is threatened by ever-worsening droughts and desertification. Indian and Southeast Asian crop yields, meanwhile, are being hit by increasingly violent and irregular monsoons. Pakistan is experiencing shortfalls of water due to receding snowcaps that are the main source of its rivers. Farms in South America, too, are being badly affected by ice loss. The once fertile plains of the American Midwest have been ravaged by dust-bowlification, while European nations in the Mediterranean are struggling with chronic drought.

A number of regions, however, are actually prospering at this time – these include Canada, Russia and Scandinavia. Melting permafrost and a retreating polar icecap have opened up vast tracts of land in the north. Russia is benefiting the most of all, now that seemingly endless stretches of arable land are appearing in Siberia. The country is taking full advantage of this, with areas being quickly bought up and divided for farms.


2030-2039 climate change global warming
Credit: University Corporation for Atmospheric Research


In previous decades, genetic engineering was viewed with suspicion. In today's world of increasing food stress, nations are readily adopting this and other methods. Russia is no exception, with GM crops being widely used throughout the country. Vertical farms, too, are being deployed more rapidly in response to the warmer climate. Third-generation biofuels – such as genetically-engineered algae and halophyte plants – have also emerged. Aquaculture is being expanded all along Russia's northern coast, due to rapid warming and melting of the Arctic. Climate change is having another benefit here, since it is increasing the stock of herring, cod, capelin, and mackerel in the region, allowing the expansion of traditional wild-catch fishing. Changing currents and warming seas have resulted in a more north-eastward distribution of the fish stock located in the Barents Sea, at great benefit to the Russian exclusive economic zone. With the Barents Sea largely free of ice for many months,* production of cod alone has jumped by over 50%.*

Besides food, Russia is now also secure in terms of fresh water. With much of Brazil affected by chronic droughts, Russia along with Canada holds an increasingly large percentage of the world's available fresh water. Now that it is able to support itself, Russian food is in great demand, especially in Europe and Central Asia. Russia's influence on the world stage grows considerably during the 2030s.*

In light of the unfolding crisis in Europe, this constitutes a significant shift in power and resources, which inevitably results in friction with the other superpowers. One side effect of this, however, is the increasing flow of immigrants and refugees attracted by Russia's new-found abundance and wealth. Many are fleeing resource conflicts throughout Eurasia. Due to its sheer size, it is virtually impossible for Russia to fully close its borders. This is a particular issue with those fleeing the drought-stricken Tibetan Plateau of Western China.

As a result of all this, Russia's population has begun to stabilise, having recently undergone a decline. This trend is due to both domestic food security and the growing numbers of immigrants fleeing disasters at lower latitudes.



Swarm robotics are reaching the nanometre scale

Swarm robotics is a relatively new field, having emerged in the first decade of the 2000s. It is based on the idea of controlling very large numbers of robots simultaneously, in order to perform tasks that an individual machine would be unable to accomplish alone. This is achieved using a combination of miniaturised computers and locomotive systems, ultra-light materials, compact sensors and wireless technologies.

Early generations of these robots were comparatively large and bulky, lacking the necessary processing power to engage in any complex activities. Although capable of flight, they were mostly experimental, often bird-sized and relied on heavy components with poor battery life. The technology improved greatly in the 2010s, however, leading to a new era of spy drones the size of insects.** These could mimic the body structure, movements and behaviour of real insects.

Over the next two decades, further improvements in AI and remote guidance allowed these machines to operate in increasingly large and capable networks, while at the same time, electronic components were shrinking in size by two orders of magnitude per decade.**


swarm robot technology 2030 2035 2040


Among their most important uses during this time was functioning as artificial pollinators in response to the collapse in honey bee populations.** They could also serve in other environmental roles, such as monitoring the atmosphere, land and water – including urban areas – with unprecedented speed and detail. These devices were also useful in search and rescue missions, helping to improve real-time data acquisition.

A more sinister application would be seen in military engagements. By 2030, the machines had been scaled down to match even the smallest known insect, less than 0.15 mm (0.0059") long.** Towards the end of this decade, they are so compact and miniaturised that some variants are now invisible to the naked eye. They can be manufactured in vast networks, numbering in the trillions and together resembling clouds of gas. This effectively is a form of programmable matter, with each "particle" being a robot capable of flight. Released from capsules dropped by UAVs, the swarms perform advanced reconnaissance, coordinate cyber attacks and invade bases – taking down human targets and even disabling large vehicles. Like termites, they use specialised appendages to chew through electronics and mess up defensive equipment, leaving enemies completely vulnerable. Even those in underground bunkers are not safe – the swarms dissolve all but the most heavily reinforced armour and can easily penetrate cracks, keyholes, air vents and the like.**

As well as their offensive abilities, nanobots can serve in defensive roles. Floating at low altitude, they can provide cover to advancing ground forces, acting as shields or "buffers" to incoming projectiles, somewhat like the barrage balloons of World War II. They can also coalesce to form temporary structures, like simple bridges to cross a river, stretchers to carry injured personnel, ropes and ladders, and so on.*

Adoption of military nanotech has accelerated in recent decades, as nations try to gain the edge in warfare.** Nanobot swarms are the latest and by far the most powerful step in this race. They are classified as weapons of mass destruction by the UN, placing them in the same category as nuclear, chemical and biological weapons. International treaties are subsequently signed, limiting their use. Safety mechanisms are also introduced in order to minimise the potential for adaption.* Self-replicating variants, for example, are flat-out banned, since these could consume the entire biosphere. Fears are growing of a potential terrorist attack (or "grey goo" incident).



Establishment of the first manned lunar bases

By the latter half of this decade, a number of government and private ventures have successfully constructed the first human settlements on the Moon.*** This marks a significant milestone during a period of accelerated development in space, which has seen major technological advancements and the increased commercialisation of human space flight. Despite the current upheaval being seen around the world as a result of climate change and other issues, public participation via the proliferation of information technology and the promised resources of outer space have succeeded in renewing public interest in human exploration.**

Over the past decade, a number of countries returned to the Moon or entered the final stages of planning for the first time in half a century.* By the late 2020s and early 2030s, Russia and the United States had built stations in lunar orbit. Also constructed were a series of robotic bases for remote surface exploration.** This was finally followed by the first manned bases on the lunar surface in the mid-late 2030s. In many cases, construction is made easier and cheaper thanks to advanced 3D printing. This makes it possible to forge new tools, spare parts and even components for entire buildings, using the lunar regolith as construction material.* The poles are the most favoured regions for settlement, having the twin advantages of both (a) permanently illuminated spots for near-continuous solar power, and (b) permanently shadowed craters known to contain water and other volatiles. This is a result of the Moon's axis of rotation.*


moon base 2030s

The Moon's South Pole. Permanently shadowed regions appear black. Locations with highest average illumination – highlighted pink – are distributed in a few clusters. The best-illuminated spot is near Shackleton crater, shown by the arrow. Credit: NASA/GSFC


Though much of this has resulted from international cooperation, it is also the long-term culmination of individual national space programs. Russia, for example, had been planning a lunar base since the early 2010s.* Its success has been largely thanks to a series of heavy lift rockets developed in recent years. After landing its first man on the Moon at the beginning of the decade, Russia would go on to complete its first base just a few years later.*

China has had even more ambitious plans. Following its own manned missions in the previous decade, it has now also completed its first base.* Unlike other efforts, China's space program is largely singular, without much international collaboration. This has led to fears about the political, military and other consequences of a Chinese lunar presence.*


moon base 2030s
Credit: ESA/Foster & Partners


NASA's programs, until this point, have been largely focused on Mars exploration. As a result, lunar occupation by the United States has been mostly in the form of private companies like Bigelow Aerospace. This venture has been especially productive, with a new generation of large inflatable modules established on the lunar surface. Now, however, NASA itself is playing a more active role.* With completion of the first Mars landing,* there has been a refocusing in recent years on lunar exploration. Though a completed NASA base is still years away, manned operations are initiated around this time.* This is done in conjunction with both private and governmental partners and utilises the commercial infrastructure already present.

The participation of other countries – such as Japan, India, Iran and the nations of Europe – is largely limited to joint ventures. The cost of going to the Moon is still considerable and faces major economic and political barriers in many places. Though advances are being made, they are still a few years away from independent programs. India is making the greatest strides, largely thanks to the ongoing expansion of its economy and its emergence as a major world power.*


moon base 2030s
Credit: ESA/Foster & Partners




Lion populations in Africa have declined by half

Between 1990 and 2015, lion populations throughout many parts of Africa declined sharply. The reductions were especially alarming in West* and Central Africa. In two national parks, the Mole and Comoé – located in Ghana and the Ivory Coast, respectively – the animals were found to be extinct.

The main threats to lions were the spread of subsistence farming into woodlands, open plains and thick bush where lions hunted and bred. Being in close proximity to human settlements meant they were often killed in retaliation for attacks on livestock or humans. Alongside this, a thriving trade in bush meat was depleting the prey that lions depended on for survival. Trophy hunting was another problem, one notable example being the death of Cecil the lion, a major attraction at Hwange National Park in Zimbabwe, who was killed by a recreational big-game hunter.*

Having once been found in southeastern Europe and throughout much of the Middle East and India, lions had lost 85% of their historic range by 2015.* Conservation efforts were impeded due to most African nations lacking the money and resources that were needed – so inevitably, lion populations underwent further declines. By 2035, their numbers have halved again, with about 10,000 surviving mostly in southern parts of the continent, which has better wildlife protection measures and a lower density of humans.*


lions future timeline



World tin reserves are running out

Tin is a silvery-white metal that is soft, ductile and malleable. Among the oldest metals known to mankind, it was discovered around 3000 BC during the bronze age, which is in fact named for an alloy of tin and copper. Its role in casting as an alloy created a valuable trade network that linked ancient civilisation for thousands of years.*

Tin does not occur naturally in pure form, so it must be extracted from other ores. Because of tin dioxide's high specific gravity, tin is often mined downstream of a primary deposit – along river banks, in valleys, or at the bottom of the ocean. Therefore, the most economical extraction methods are dredging, open-pit and hydraulic mining. Historically, the largest producers of tin have been China, Indonesia, Malaysia, Peru, Brazil and Bolivia.

Tin is primarily used in soldering, metal plating, a wide range of alloys, superconducting magnets and PVC plastics. As China and other emerging nations continue to demand resources beyond what the Earth can provide, tin is among the metals now in critical decline. By the mid-2030s, most of the large economically recoverable deposits have been completely exhausted.**

Local, individual and small-scale mines – not reporting their reserves in the manner of large mining corporations – have continued to supply the markets. Recent new discoveries in Columbia* have also provided some temporary relief to demand. However, an adequate long-term solution can only be found with a complete replacement for tin.* Recycling has increased sharply as the market trends away from mineral sources.


world tin reserves 1980 1990 2000 2010 2020 2030 2035





Distributed propulsion systems are revolutionising air travel

During this decade,** a number of national militaries and commercial aerospace firms are adopting turbo-electric distributed propulsion systems for their aircraft, replacing the more traditional wing-attached engines. This is a result of recent advances in materials science, cryogenic cooling systems, novel fuels, high fidelity computational fluid dynamics (CFD) and experimental tools. Along with hypersonic engines,* this technology is contributing to an ongoing revolution in aircraft design.

The basic concept of distributed propulsion is that the thrust-generating components of an aircraft are now fully integrated into the airframe of the vehicle. Instead of one or two large singular engines attached to the outside of the wing or fuselage, thrust is generated by a spanwise distribution of smaller engines or fans across the width of the wing. These are also more seamlessly merged into the body of the plane, offering major advantages in terms of aerodynamics and thrust. This is usually combined with a blended wing body design, creating a more streamlined, synergistic combination of all aircraft components.

Airflow around the plane is optimised – allowing for steeper climbs during take-off, greater degrees of control and manoeuvrability, higher bypass ratios and much greater fuel efficiency. In addition, the majority of these systems utilise electrical propulsion.* Advances in energy storage, as well as a new generation of ultra-lightweight superconductors, have finally paved the way for large-scale production of electric aircraft. These have the benefits of lighter weight, less maintenance, a noise reduction of up to 70 decibels and lower carbon footprints. Construction of these planes is also considerably cheaper in many cases.*


2035 distributed propulsion technology



Self-driving vehicles are widespread

Accelerating breakthroughs in the fields of artificial intelligence, sensors and telecommunications have led to a new generation of self-driving cars. These vehicles are considerably safer and more reliable than previous models and now dominate the mainstream markets, particularly in developed nations.** Today, annual purchases of autonomous vehicles are nearing 100 million worldwide, representing almost 75% of all light-duty vehicle sales.* This compares with 60 million total light-duty vehicle sales in 2012, and is largely due to soaring populations and the rapid industrialisation of many countries.

Simpler versions of this technology were seen in the 2010s in the form of emergency braking systems,* connected vehicle networks,* self-parking and freeway cruising features. Now though, computing power and stronger AI mean that today's autonomous vehicles can outperform even the best human drivers. A combination of GPS, on-board sensors, traction and stability control, and adaptive cruise control allow a car to sense incoming objects from all directions, detect incoming crashes and impacts, predict the movements of other vehicles on the road, and adapt to changing road and weather conditions. Real-time updates are constantly received by the car's on-board computer, giving up-to-date information on traffic, allowing the vehicles to determine the optimal route to their intended destination.


future car technology 2030s
Credit: GM


A number of hurdles had to be overcome in order to reach this point. One was the reluctance of automakers to take on responsibility for both the construction and operation of their vehicles. Another was the disruption autonomous vehicles posed to the insurance industry.* Shifting responsibility from driver to manufacturer added a whole series of complications to the legal and financial proceedings of potential accidents. Indeed, the early adoption period of self-driving cars was marked by a number of high-profile lawsuits and court hearings, often hyped up by media outlets. Alongside this were the ethical implications of putting the lives of passengers and pedestrians into the hands of a machine.

Despite these problems, the rapidly improving performance and inherent safety of these vehicles succeeded in boosting demand substantially. The efficiency offered by self-driving cars also helps to cut down on congestion and pollution. As well as improving road safety, most of these cars are now electric, or hybrid electric, reducing their CO2 impact.* These and other factors mean that by the middle of this century, the vast majority of cars on the road will be fully autonomous.*


driverless car technology self driving 2030 2035 2040 future car hybrid electric vehicle environment
© Dary423 | Dreamstime.com



Holographic recreations of dead people

Throughout this time many dead celebrities, presidents and historical figures from the past are "resurrected" via the immense AI and supercomputing powers now available. This phenomenon is aided by the recent human brain simulations that have been made possible. Data mining of every single word ever spoken, written, or otherwise recorded by the person is undertaken, then analysed to recreate their character traits and emotions. This allows the construction of a highly accurate "shell" personality, surrounding a generic "core" program, run as an entirely independent AI simulation.

The project sparks much controversy when first announced (especially among the religious community) but soon gains momentum, as a whole host of actors, musicians, artists, scientists, politicians and other individuals from the past are made available.* Advanced holographic techniques – combined with real-time audio-visual interaction – make them appear as lifelike as any other person alive in the world today.

This form of computerised resurrection is soon extended and made possible for ordinary citizens wishing to preserve a loved one in digital form; though once again, it is more popular among the non-religious (and the process is generally less accurate, since the average person tends to leave behind less data, written words, video recordings and other information for use in constructing the programs). The technology involved is also expensive. It is used mainly by the rich for now – or in certain public locations such as museums, galleries and other venues.


john lennon nyc





Robots are dominating the battlefield

Highly mobile, autonomous fighting machines are appearing on the battlefield now. Guided by AI, they can aim with inhuman precision* and come equipped with powerful sensors, GPS and thermal vision. They can be deployed for weeks or months at a time if necessary, without need for rest or maintenance. They have other advantages too – such as a complete lack of remorse or fear; no need for training or retirement payments or other such costs. However, debates are raging over the morality and ethics of these weapons systems.


future military robot 2035-2039
Credit: Qinetiq



London's population exceeds 10 million

By 2035, the Greater London area has a population that exceeds 10 million people.* As humanity's first major "world city", the British capital had experienced phenomenal growth during the 19th and early 20th centuries, growing from 1.1 million people in 1800 to over six times that figure by 1900. London reached a peak in 1939 with over 8.6 million residents. This was followed by 50 years of decline after the ravages of the Blitz and World War II,* its population dropping to 6.4 million by 1990. In the early 21st century, the city saw a major resurgence and economic boom with vast amounts of immigration and construction activity. This continued in subsequent decades, London retaining its position as a leading centre of global finance, commerce, education, entertainment, fashion, media, research and development, tourism and travel. It was not without problems, however, as growing demand placed ever greater pressure on public transport, housing, social services and other areas;* issues which had already caused residents considerable stress in earlier decades. To deal with its lack of space, the city was forced to build upwards, rather than outwards into the green belt. Having once been a traditionally low-rise city without much of a skyline, London had become more and more receptive to skyscrapers, with a relaxation of formerly protected views and planning regulations around historic buildings such as Big Ben and St Paul's Cathedral. As such, London by 2035 has a dramatic number of tall buildings in its urban core, but also around high density transport nodes in the outer boroughs. The ethnic diversity of the city has also expanded further. In 2015, just over 3.8 million of the 8.6 million residents (44%) were of black and minority ethnicity origin. This figure has increased to almost 50% by 2035. As a haven of economic, legal and political stability, London continues to attract people and draw talent from around the world – its population will reach 11 million by 2050.*


london future population 2020 2030 2040 2050



Norway's underwater suspended tunnels are completed

A major feat of engineering is completed in Norway this year as the final in a series of submerged floating tunnels (SFT) is opened. This novel concept consists of parallel tubes measuring 1,200 m (4,000 ft) in length, each carrying two lanes of traffic across the Sognefjord – the largest and best known fjord in Norway and second longest in the world. Supported by their own buoyancy, the structures exploit the physics of hydrostatic thrust, or the Archimedes' principle. They are suspended at depths of 65 to 100 ft, below any possible contact with ships and withstanding any tidal movements or adverse weather effects.

The initial phase of this project became the first underwater suspended tunnel to be operational anywhere in the world.* In subsequent years, it was joined by several others in nearby regions, together costing a total of $25 billion. This project is designed to ease the congestion of local ferry services and to slash travel times between the north and south of the country. For example, a car journey of 21 hours from Kristiansand to Trondheim is reduced by more than half. Most of the vehicles on the nation's roads are self-driving by now, which helps to further improve road travel times. Being underwater and out of sight (as opposed to highly visible bridges over land) also means the scenic landscapes of each region can be preserved.


Credit: The Norwegian Public Roads Administrationnorway future underwater tunnel project 2035



The global airline fleet has doubled

By 2035, the number of commercial airplanes in service has doubled compared to 2015 – going from 22,500 to over 45,000 with a total worldwide value of nearly $6 trillion.* Most of this growth has come from smaller, single-aisle planes, stimulating demand for low-cost carriers and providing replacements for older, less-efficient planes. Perhaps unsurprisingly, airlines in the Asia Pacific region comprise the largest share of new orders (38%), followed by North America (21%), Europe (19%) and the Middle East (8%).

The customer base for airplanes has become increasingly diverse and globalised, thanks to emerging markets and new business models. In 1995, airlines in Europe and North America represented 64% of all traffic. By 2035, that share has fallen to 37%, with Asia Pacific and Middle Eastern airlines becoming far more prominent in global aviation.* Meanwhile, hypersonic travel is now possible on a number of routes, greatly reducing journey times and making the world feel smaller and more interconnected than ever before.

However, all regions still face the challenges of fuel-price volatility, emission controls, and ever-increasing airport and airspace congestion. Biofuels and other low or zero-carbon technologies – including solar power for short to medium haul flights* – are used for many more planes than in earlier decades, but still account for only a fraction of the total number. With air traffic growth outpacing efforts to reduce pollution, the aviation sector has become an increasingly significant contributor to global greenhouse gas emissions.


2035 global airline fleet doubled



« 2034 2036 »
                  Share Share


1 "By the time it reports back, in about five years, the next set of results from the LHC should help settle on a conceptual design for a machine that might be built anywhere. From there another five years to complete a detailed design, choose a site, and secure international approval and financing. And with 10 years to build and install the equipment, it might just be feasible to have a new machine ready when the LHC retires in 2035. ... the tunnel that now houses the LHC, and previously housed LEP was first discussed 40 years ago, and will still be in use in 20. Likewise, the future collider will probably go through many incarnations, and still be running in 60 years."
Cern considers building huge physics machine, BBC:
Accessed 22nd February 2014.

2 Searching for supersymmetry: Work begins on Large Hadron Collider's 60-mile-long successor, ExtremeTech:
Accessed 22nd February 2014.

3 First experimental signs of a "New Physics" beyond the Standard Model, Future Timeline Blog:
Accessed 22nd February 2014.

4 See 2072.

5 See 3500 AD.

6 What else can you do with a Big Dumb Booster?, Charlie's Diary:
Accessed 23rd December 2016.

7 Keeling Curve, Wikipedia:
Accessed 23rd December 2016.

8 NSN Webinar: Exploring Exoplanet Biosignatures, YouTube:
Accessed 23rd December 2016.

9 NASA chief scientist Ellen Stofan: "I think we're going to have definitive evidence within 20 to 30 years."
Signs of Alien Life Will Be Found by 2025, NASA's Chief Scientist Predicts,
Yahoo! News:
Accessed 23rd December 2016.

10 "Since imaging allows us to directly study the light coming through the planet's atmosphere, it also uniquely allows us to perform spectral analyses of exoplanet spectra to study their atmospheric compositions. An exciting future possibility of direct imaging is the ability to search for atmospheric chemical biosignatures of life on alien planets. Currently there are several concepts for a large space-based telescope whose primary science goal will be to directly image Earth-like planets and to study their signs for atmospheric biosignatures. With continued support, it may be possible to perform a truly scientific search for life on other planets by 2040."
NASA Planet Discovery AMA,
Accessed 23rd December 2016.

11 How common is alien life in our galaxy?, Future Timeline Blog:
Accessed 23rd December 2016.

12 Two billion planets in our galaxy may be suitable for life, The Guardian:
Accessed 23rd December 2016.

13 One percent of all exoplanets may be suitable for complex organisms, Future Timeline Blog:
Accessed 23rd December 2016.

14 Climate Wars: The Fight for Survival as the World Overheats, by Gwynne Dyer
Accessed 18th January 2011.

15 World lacks enough food, fuel as population soars: U.N., Reuters:
Accessed 11th February 2012.

16 See 2033.

17 Climate change: Drought may threaten much of globe within decades, University Corporation for Atmospheric Research:
Accessed 11th February 2012.

18 Will the Arctic be free of summer ice in 30 years?, National Oceanic and Atmospheric Administration:
Accessed 11th February 2012.

19 Impacts of climate change on commercial fish stocks in Norwegian waters, Elsevier:
Accessed 11th February 2012.

20 20 predictions for the next 25 years, The Guardian:
Accessed 11th February 2012.

21 Bird and insect-like drones being planned by DARPA, Future Timeline Blog:
Accessed 30th December 2014.

22 Army: Make Us a Mini-Drone Swarm, Wired:
Accessed 27th September 2013.

23 "Bell's Law says there's a new class of smaller, cheaper computers about every decade. With each new class, the volume shrinks by two orders of magnitude and the number of systems per person increases. The law has held from 1960s' mainframes through the '80s' personal computers, the '90s' notebooks and the new millennium's smart phones."
Toward computers that fit on a pen tip: New technologies usher in the millimeter-scale computing era, University of Michigan:
Accessed 27th September 2013.

24 "In the coming years, expect to see these actions sped up and miniaturized even further, allowing for thousands if not millions of these robots to form together..."
Swarm Robotics: Beware The Swarm (videos), Singularity Hub:
Accessed 27th September 2013.

25 "We are at least a decade away from seeing robobees being used in real world applications. Eventually we'd like to see many of these robots work together similar to a colony of bees pollinating flowers. The robobees project will produce utility for society far beyond flying robot bees."
Urban hives, robotic bees and the plight of the honeybee,
The Guardian:
Accessed 27th September 2013.

26 "If bees continue disappearing at this rate, it is estimated that by 2035 there will no honeybees left in the US."
Extract from A World Without Bees,
Accessed 27th September 2013.

27 "Bell's Law says there's a new class of smaller, cheaper computers about every decade. With each new class, the volume shrinks by two orders of magnitude and the number of systems per person increases. The law has held from 1960s' mainframes through the '80s' personal computers, the '90s' notebooks and the new millennium's smart phones."
Toward computers that fit on a pen tip: New technologies usher in the millimeter-scale computing era,
University of Michigan:
Accessed 27th September 2013.

28 "Like most chalcid wasps, fairyflies are very tiny insects, averaging only 0.5 to 1.0 mm (0.020 to 0.039 in) long. They include the world's smallest known insect, with a body length of only 0.139 mm (0.0055 in), and the smallest known flying insect, only 0.15 mm (0.0059 in) long."
Accessed 27th September 2013.

29 Pain Rays and Robot Swarms: The Radical New War Games the DOD Plays, The Atlantic:
Accessed 27th September 2013.

30 "...a class of highly miniaturized (one millimeter scale) electromechanical systems capable of being deployed en masse and performing individual or collective target attack. Various deployment approaches are possible, including dispersal as an aerosol, transportation by a larger platform, and full flying and crawling autonomy. Attack is accomplished by a variety of robotic effectors, electromagnetic measures, or energetic materials."
U.S. Air Force:
Accessed 27th September 2013.

31 "It is only a concept at the moment. In biology, it is called morphogenesis, and it could allow robots to acquire different shapes. They could assemble in a stiff line to form a bridge, or become flexible to climb a wall. Researchers have been creating swarm robots that can do both. In the next 20 to 25 years, we could see these systems being used..."
Why Robot Swarms Look Set To Roam The Earth,
Tech Week Europe:
Accessed 27th September 2013.

32 "From a military standpoint nothing could possibly be more useful than free-roving nanites which seek out and destroy the enemy by disassembling weapons, soldiers, vehicles, transport, supplies and infrastructure in a matter of seconds to minutes. The military has to be working on nanites, whether they want to or not, because other nations certainly will."
Interview with John Robert Marlow on the Superswarm Option, Nanotechnology Now:
Accessed 27th September 2013.

33 Engines of Creation: The Coming Era of Nanotechnology, by Eric Drexler:
Accessed 27th September 2013.

34 Nanotechnology Dangers and Defenses, KurzweilAI:
Accessed 27th September 2013.

35 "All of these factors – the available shelter, water, resources and potential for power — along with the Moon's relatively close proximity to Earth, are reasons why we may see the first lunar bases built before 2035."
New data about the Moon may help create lunar bases,
Accessed 8th September 2013.

36 "In January, Newt Gingrich's space ambitions were mocked by many experts as well as the public, particularly his vow that a moon colony would be established by the conclusion of his 'second term.' Musk isn't committing to a timeline nearly so ambitious; when pushed by Wright, he suggested that this could be a reality within the next 30 years."
Why Elon Musk Wants To Bring People to Mars—and Go There Himself, Slate:
Accessed 8th September 2013.

37 Advancing Future Studies, TechCast:
Accessed 8th September 2013.

38 Crowdfunding Shoots for the Moon, Space.com:
Accessed 8th September 2013.

39 Can Earthlings Crowdfund a Moon Colony?, Bloomberg:
Accessed 8th September 2013.

40 See 2025-2035.

41 "The first step in establishing a moon base might be robotic. Once unmanned missions establish the beginnings of a base, humans can launch to the lunar surface to conduct research and maintain the habitat."
Incredible Technology: How to Live on the Moon,
Accessed 8th September 2013.

42 Lunny Poligon, RussianSpaceWeb:
Accessed 8th September 2013.

43 Future astronauts could use Moon rock and 3D printers to make tools and equipment on site, Future Timeline Blog:
Accessed 8th September 2013.

44 Best-illuminated locations near the lunar south pole, NASA:
Accessed 8th September 2013.

45 Putin unveils $50 bn drive for Russian space supremacy, PhysOrg:
Accessed 13th September 2015.

46 Russia and Japan reconfirm plans for permanent orbital moonbase 2025 and lunar surface 2035, Next Big Future:
Accessed 8th September 2013.

47 Will China take over the moon?, NBC News:
Accessed 8th September 2013.

48 Red Moon Rising, Foreign Policy:
Accessed 8th September 2013.

49 40 years after Apollo's end, the moon looms again as future destination, NBC News:
Accessed 8th September 2013.

50 See 2033.

51 "Similarly, without major money and technical changes, a moon landing is unlikely to occur before 2024 -- at the earliest, the panel was told Thursday -- and possibly as late as 2035."
Space panel considers alternatives to NASA's plan for moon base,
Accessed 8th September 2013.

52 See 2040.

53 Lions are critically endangered in West Africa, FutureTimeline Blog:
Accessed 24th November 2016.

54 Killing of Cecil the lion, Wikipedia:
Accessed 24th November 2016.

55 Lions added to endangered species list, FutureTimeline Blog:
Accessed 24th November 2016.

56 "About 20,000 lions remain in all of Africa, according to estimates. The scientists projected that there was a 67 percent chance that the number of lions in Central and West Africa would drop by half within two decades."
Lion Population in Africa Likely to Fall by Half, Study Finds,
The New York Times:
Accessed 24th November 2016.

57 Tin sources and trade in ancient times, Wikipedia:
Accessed 8th July 2012.

58 Tin Statistics and Information, United States Geological Survey (USGS):
Accessed 8th July 2012.

59 5 Valuable Metals That Could Vanish by 2055, Environmental Graffiti:
Accessed 8th July 2012.

60 Seminole Group Colombia Allocates 300,000 MT's of Tin Ore to be Sold at a Discount of Market Value, 1888 Press Release:
Accessed 8th July 2012.

61 Tin Market: Overview, Taronga Mines:

Accessed 8th July 2012.

62 "This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA's Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft- related fuel burn, emissions, and noise by the year 2030 to 2035."
See Distributed propulsion vehicles, NASA:
Accessed 14th August 2013.

63 "... appearing on the 25-year horizon."
See Cruise-Efficient, Low-Noise, Short-Takeoff-and-Landing Vehicle Studied for the Revolutionary System Concepts for Aeronautics Project, NASA:
Accessed 14th August 2013.

64 See 2033.

65 Development of a 3D Sizing Model for All-Superconducting Machines for Turbo-Electric Aircraft Propulsion, IEEE Xplore:
Accessed 14th August 2013.

66 Superconducting Distributed propulsion – many small engines that are integrated with the airframe for radically different airplanes, Next Big Future:
Accessed 14th August 2013.

67 By 2035, Nearly 100 Million Self-Driving Cars Will Be Sold Per Year, Report Says, Vice:
Accessed 26th August 2013.

68 "'In five to 10 years the technology could be applied in private areas like airports, factories or warehouses. On motorways ... in 10-20 years,' Rojas told reporters. 'In cities the obstacles could be removed in 20-30 years.'"
See German scientists see golden future for 'self-driving' cars (Update), PhysOrg:
Accessed 26th August 2013.

69 Autonomous vehicles will reach nearly 100 million in annual sales by 2035, Future Timeline Blog:
Accessed 26th August 2013.

70 See 2015.

71 See 2019.

72 4 Ways Driverless Cars Are Poised to Shake up Insurance, Insurance and Technology:
Accessed 26th August 2013.

73 See graph at 2027.

74 See 2050.

75 "Once the human mind is completely understood (which optimistically could happen within the next two-to-three decades), it may be possible for tomorrow's computers to simulate brain activities of a deceased person's last few years, or even their entire life; then dispatch nanobots to scan the brains of every living person who knew of the deceased to gather more information. All this data could then be used to simulate the deceased person's mind and current state of consciousness..."
See Simulating The Deceased, Institute for Ethics and Emerging Technologies:
Accessed 26th August 2013.

76 Coming to the Battlefield: Stone-Cold Robot Killers, Washington Post:
Accessed 9th Jan 2009.

77 Population by borough 1939 to 2039, Greater London Authority:
Accessed 22nd February 2015.

78 Explore the London Blitz during 7th October 1940 to 6th June 1941, Bomb Sight:
Accessed 22nd February 2015.

79 London Infrastructure Plan 2050, Greater London Authority:
Accessed 22nd February 2015.

80 London population confirmed at record high, Greater London Authority:
Accessed 22nd February 2015.

81 Norway to build world's first floating underwater traffic tunnels, inhabitat:
Accessed 28th November 2016.

82 Global airline fleet to double by 2035, FutureTimeline Blog:
Accessed 15th December 2016.

83 Current Market Outlook 2016-2035, Boeing:
Accessed 15th December 2016.

84 "I'm sure that within 10 years, we'll see electric airplanes transporting 50 passengers on short to medium haul flights."
See The first solar-powered aircraft to circumnavigate the Earth, Future Timeline:
Accessed 15th December 2016.




future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Privacy Policy