future timeline technology singularity humanity
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

21st century

22nd century

The Far Future



2000s | 2010s | 2020s | 2030s | 2040s | 2050s | 2060s | 2070s | 2080s | 2090s

2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039

2031 timeline contents




Much of Bangkok is being abandoned due to flooding

Bangkok, with a population of over 12 million, has been sinking underwater for decades. By the early 2030s, it is facing a disaster of epic scale, with much of the city being abandoned.*

This has occurred for various different reasons. First and foremost, the city is built on clay. When originally settled, the region was just swampy coastline, but today it is covered by skyscrapers, highways and urban development. The enormous weight of all this concrete and steel has been pushing down on the soft clay beneath, causing the soils to descend by up to 5.3cm per year. By 2010, part of the megalopolis was already under sea level, a trend that would only become worse in the following decades.

The illegal tapping of groundwater has been another major factor. Many of the city's residents have been continuously pumping up groundwater – both for their own use and to sell as a commodity – removing a natural layer and resulting in further destabilisation of the soil.

Rising sea levels due to global warming have been yet another factor, eroding the coastline at a rate of 4cm a year, while the increasing severity of monsoon rains has led to longer and more devastating floods.

The explosive growth of Bangkok in recent decades (making it one of the fastest growing places in southeast Asia) has dealt a serious blow to the city's infrastructure. Areas of land that had in the early 20th century been used to absorb flood waters had vast suburbs and business districts built over them. Canals were filled in to make way for the rapid urbanisation of the Chao Praya River Delta. The weight of the city grew and grew, to the point where the soft soil it was built upon could simply no longer support it.

By the early 2030s, large portions of the megalopolis are well below sea level. The government's response during this time has proven inadequate, a lack of clear policy doing little to help the overall situation,* while sea walls have been almost useless due to increasing erosion of the shore. The lowering of the city, combined with rising sea levels (over 20cm higher than in 2000), has resulted in whole districts of Bangkok being permanently abandoned. Over a million buildings, the majority residential, are rendered uninhabitable, forcing their occupants to move further inland.

Many areas which have yet to be fully claimed by the sea have also been evacuated, as the regularity of flooding proved too costly for many. Shantytowns and refugee camps are forming outside the city, while the government struggles to adjust as the capital sinks. Thailand as a whole is going through a period of almost unimaginable stress at this time, a result of such huge population displacement. The political, economic and social upheaval in the region is having a significant impact on global GDP.

Efforts are underway to save Bangkok's numerous historical monuments and artifacts, with some temples being moved inland and reconstructed in their entirety. Due to the scale of this disaster, however, much is lost.

In the coming years, the situation for Bangkok will only worsen as more and more of the city is permanently flooded. By the end of this century, the entire city will be abandoned.*


bangkok 2030



Global reserves of lead are running out

Lead is a carbon group element with high density, malleability, softness and ductility. Metallic lead is relatively rare in the Earth's crust, and so is usually processed from zinc, silver and copper ores. Like silver, lead has been in use by humans for thousands of years. It was widely exploited by the Roman empire and played a large role in the industrial revolution. World production doubled from 1850 to 1900, doubled again from 1900 to 1950, then doubled yet again from 1950 to 2000.*

Due to its high density, it has often been used as a weight or ballast, as well as radiation shielding. It is also used in firearms and other weaponry. The bulk of lead is used in producing car batteries and similar, as well as in electrodes and high voltage wires. The primary producers are China, Australia, the United States, Canada and Kazakhstan.

Lead is also a pollutant and can be hazardous to human health, being infamous for its older uses in paint and fuels. From the 18th to 21st centuries, environmental levels of lead increased more than 1,000-fold.* In terms of numbers of people exposed and the public health impact, it became one of the largest environmental medicine problems. Although regulations from the 1970s began to reduce the lead content in products and greatly cut exposure in the developed world, many developing countries still allowed its use.

By the early 2030s, most reserves of lead are beginning to be exhausted.** Much of the recent increase in demand has come from China's growing automobile sector. Because about half of the supply comes from recycled scrap, improved recycling programs are able to carry demand in the short term. Fortunately, lead has ready alternatives for most of its uses including zinc, copper, iron and tungsten. However, some of these metals will soon be facing their own shortages too, necessitating the production of artificial replacements. Because of this, the 2030s sees an acceleration of global recycling efforts in order to avert a resource crunch.


lead future 2030s



Perennial wheat and corn are becoming profitable

In traditional agriculture, all major grain crops have been "annuals", or short-lived perennials grown as annuals – surviving for just one growing season. They die off once harvested, and then a brand new crop must be planted to take their place. This requires vast amounts of fuel, fertilizer, herbicides and pesticides – causing soil erosion, acidification and disrupting both the nitrogen and carbon cycles.

Between 1600 and 2000 AD, the United States lost around one-third of its topsoil. Worldwide, soil erosion was putting the livelihoods of nearly a billion people at risk by the early 21st century.* More than a quarter of Earth's land surface had been converted for agricultural use, with more land converted since 1950 than in the previous 150 years. This situation was being exacerbated by rapid population growth,* demand for meat products in emerging economies, soaring production of biofuels,* along with climate change and peak phosphorus* looming on the horizon.

Genetic engineering had emerged as an important tool in crop management. Among the more notable advances occurred in 2017, when BioCassava Plus received regulatory approval, giving a huge boost to farming in Africa.* By the early 2030s,** this has been followed by an even greater breakthrough – perennial wheat and corn – becoming profitable after many years of development.

Perennial grain crops provide a revolution in agriculture. By growing continuously for two or more years, they are far more efficient than traditional annual crops, requiring less fuel, fertilizer, herbicides and pesticides. They can store more carbon, maintain better soil quality and water content, and manage nutrients better, thanks to their deeper root systems.

The deciphering of bread wheat's genetic code in the early 2010s* helped in paving the way towards a new generation of perennial crops. The rate of increase in wheat yields, having been in decline since 1980, is now beginning to increase again. However, agriculture will face a new set of challenges later this decade as the effects of climate change begin to accelerate markedly.*


perennial wheat corn 2020 2030 future food



Web 4.0 is transforming the Internet landscape

Further convergence of the online and physical worlds has led to the emergence of "Web 4.0" – the next generation of internet. Semantic analysing programs, having evolved into stronger AI, now perform a huge range of automated tasks for business, government and consumers. Running on massively parallel networks, these applications hunt for textual and visual data – combining the most subtle capabilities of humans (such as pattern recognition) with ways in which machines are already vastly superior (such as speed and memory).*

In addition to serving as highly advanced search engines, they are playing a major function in the real world – gathering information from the array of sensors, cameras and other tracking devices now present in the environment, on vehicles, and even on people themselves.

Although privacy and civil liberties issues are being raised, this new generation of IT promises to bring enormous benefits to society. Crimes are faster and easier to solve thanks to these intelligent virtual agents; transport and logistics are smoother and more efficient; resources can be managed and distributed more accurately.

In addition, practically every physical document in existence has now been digitally encoded, backed up and archived online. This includes full copies of all books, journals, manuscripts and other literature ever published – forming a complete repository of human knowledge going back thousands of years. These documents can be retrieved and analysed using real-time speech commands, translated from any of the world's 6,000 languages and accessed via 3D holographic imaging.

Web 4.0 is also democratising the Internet more than ever before. News agencies are finding themselves increasingly outmoded by bloggers and other social media when it comes to speed and accuracy of information.


web 4.0 future internet 2030s technology timeline



Stem cell pharmacies are commonplace

Stem cell pharmacies are now a fairly common experience in the developed world, offering walk-in diagnosis, stem-cell collection and banking services for use in future medical crises. Affordable, personalised and targeted treatments are becoming available for regenerating various body parts and organs.*


stem cell future therapy 2020 2030 2040 2050
© Paul Fleet | Dreamstime.com



Married couples are a minority in the UK

By now, marriage in the UK has been reduced to a lifestyle choice enjoyed by a minority, rather than an essential institution of society. The married population has shrunk from almost 50% of adults in 2009, to just 41% now.* This trend began in the 1980s. Increasing pressures of work and money, together with the general stresses of the outside world (geopolitical, social and economic), are putting ever-greater strain on couples. The decline of religious institutions has also played a part. Unmarried partnerships no longer carry the stigma they once had.

In addition, increasing numbers of people either working at home alone, or living with their parents, are making it difficult for some to meet potential partners. Another contributory factor is an explosion in the use of virtual reality and other technologies leading to increased isolation of the individual. People of all ages spend increasingly large amounts of their time engaged in highly immersive online experiences, requiring little or no interaction with the outside world.

Of those who are married, the number of children per couple has declined – and not just in the UK, but other Western societies too. Combined with increasing numbers of Muslim immigrants (who have higher numbers of children), this is significantly altering the demographic balance.


married couples are a minority 2030 2031 future trend



Chocolate has become a rare luxury

By now, chocolate has become as rare and expensive as caviar, with even a single bar costing $10-15.

Drought, soil depletion and diminishing harvests in Africa – where two-thirds of the world's cocoa is produced – have led to soaring prices. Cocoa is also competing for agricultural space with other commodities like palm oil, which is increasingly in demand for biofuels.

Poor pay and working conditions have also been a factor. Many young farmers are now abandoning their lands and heading to the cities, in search of better and more highly-paid jobs.*


chocolate rare in 20 years luxury expensive caviar



« 2030 2032 »
                  Share Share


1 Thailand, Sinking: Parts of Bangkok Could Be Underwater in 2030, TIME:
Accessed 22nd December 2011.

2 Bangkok at risk of sinking into the sea, The Guardian:
Accessed 22nd December 2011.

3 Bangkok is sinking, Global Post:
Accessed 22nd December 2011

4 Lead Statistics, US Geological Survey:
Accessed 5th July 2012.

5 Uses of Lead, Geology.com:
5th July 2012.

6 Earth's natural wealth: an audit, New Scientist:
5th July 2012.

7 5 Valuable Metals That Could Vanish by 2055, Environmental Graffiti:
5th July 2012.

8 Restoring the land, FAO:
Accessed 19th June 2013.

9 See 2030.

10 See 2018.

11 See 2033.

12 See 2017.

13 Article from 2007: "It is expected to take at least twenty-five years to achieve profitable, productive perennial grain crops."
Perennial Grain Cropping Research: Frequently Asked Questions
, The Land Institute:
Accessed 19th June 2013.

14 By 2030, Perennial Grains Could Revolutionize Agriculture, Save Humanity, PopSci:
Accessed 19th June 2013.

15 Major breakthrough in deciphering bread wheat's genetic code, Future Timeline Blog:
Accessed 19th June 2013.

16 See 2035-2040.

17 Web 4.0,Trip Down the Rabbit Hole or Brave New World?, zmogo.com:
Accessed 7th June 2009.

18 Stem cell 'pharmacies' in the high street in 20 years, predicts expert, Daily Telegraph:
Accessed 31st October 2010.

19 Married couples to be minority within 20 years, Daily Telegraph:
Accessed 4th April 2009.

20 "In 20 years, chocolate will be like caviar. It will become so rare and so expensive that the average Joe just won't be able to afford it."
See Chocolate: Worth its weight in gold?, The Independent:
Accessed 7th January 2011.




future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed