future timeline technology singularity humanity
 
   
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed
 

21st century

22nd century

The Far Future

Beyond

 

2000s | 2010s | 2020s | 2030s | 2040s | 2050s | 2060s | 2070s | 2080s | 2090s

2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029

2025 timeline contents

 

 
   
 
     
   
     
 
       
   
 
     
 

2025-2050

Unemployment is soaring

The second quarter of the 21st century is marked by a rapid rise in unemployment around much of the world.* This results in considerable economic, political and cultural upheaval. For most of the 200 years since the Industrial Revolution, new advances in technology and automation had tended to create more jobs than they destroyed. By the 21st century, however, this was no longer true. A fundamental change had begun to occur.**

Median wages, already falling in recent decades, had continued to stagnate – particularly in the West.*** Globalisation and the outsourcing of jobs to overseas markets with lower international labour rates had, of course, been partly responsible in the past. But a growing and rapidly accelerating trend was the impact of machines and intelligent software programs. Not only were their physical abilities becoming more humanlike;******** in many ways their analytical and cognitive skills were beginning to match those of people too.******

Blue collar workers had traditionally borne the brunt of layoffs from technological unemployment. This time, white collar jobs were no longer safe either.* Advanced robotics, increasingly sophisticated algorithms, deep learning networks, exponential growth in computer processing power and bandwidth, voice/facial recognition and other tech – all were paving the way towards a highly automated society. Furthermore, of the (few) new jobs being created, most were in highly skilled roles, making it hard or impossible for those made redundant to adapt. Many workers now faced permanent unemployment.

By 2025, transport was among the sectors feeling the biggest impacts.* The idea of self-driving vehicles had once been science fiction, but money was being poured into research and development. In 2015, the first licenced autonomous truck was announced. These hi-tech vehicles saw rapid adoption. Initially they required a driver to be present, who could take over in case of emergencies, but later versions were fully autonomous.* In the US alone, there were 3.5 million truck drivers, with a further 5.2 million people in non-driving jobs that were dependent on the truck-driving industry, such as highway cafes and motels where drivers would stop to eat, drink, rest and sleep. A similar trend would follow with other vehicle types,* such as taxis, alongside public transport including trains – notably the London Underground.* With humans totalling 1/3rd of operating costs from their salaries alone, the business case was strong. Self-driving vehicles would never require a salary, training, sleep, pension payments, health insurance, holidays or other associated costs/time, would never drink alcohol, and never be distracted by mobile phones or tempted by road rage.

Manufacturing was another area seeing rapid change. This sector had already witnessed heavy automation in earlier decades, in the form of robots capable of constructing cars. In general, however, these machines were limited to a fixed set of pre-defined movements – repetitive actions performed over and over again. Robots with far more adaptability and dynamism would emerge during the early 21st century. Just one example was "Baxter", developed by Rethink Robotics.* Baxter could understand its environment and was safe enough to work shoulder-to-shoulder with people while offering a broad range of skills. Priced at only $22,000 this model was aimed at midsize and small manufacturers, companies that had never been able to afford robots before. It was fast and easy to configure, going from delivery to the factory floor in under an hour, unlike traditional robots that required manufacturers to develop custom software and make additional capital investments.

Robots were increasingly used in aerospace,* agriculture,*** cleaning,* delivery services (via drone),** elderly care homes, hospitals,* hotels,** kitchens,** military operations,**** mining,* retail environments,* security patrols** and warehouses.* In the scientific arena, some machines were now performing the equivalent of 12 years' worth of human research in a week.* Rapid growth in solar PV installations led some analysts to believe that a new era of green jobs was about to explode,* but robots were capable of this task with greater speed and efficiency than human engineers.*

Holographic representations of people were also being deployed in various public assistant/receptionist roles. While the first generation lacked the ability to hold a two-way conversation, later versions became more interactive and intelligent.**

Other examples of automation included self-service checkouts,* later followed by more advanced forms of "instant" payment via a combination of RFID tracking and doorway scanners* (which also enabled stock levels to be monitored and audited without humans). Cafes and restaurants had begun using a system of touchscreen displays, tablets and mobile apps to improve the speed and accuracy of the order process,* with many establishments also providing machines to rapidly create and dispense meals/drinks,* particularly in fast food chains like McDonalds.

AI software, algorithms and mobile apps had exploded in use during the 2010s and this trend continued in subsequent decades. Some bots were now capable of writing and publishing their own articles online.* Virtual lawyers were being developed to predict the likely outcome and impact of law suits; there were virtual doctors and medical bots (such as Watson), with increasingly computerised analysis and reporting of big data (able to find the proverbial "needle in a haystack" with hyper-accuracy and speed);* virtual teachers and other virtual professions.

3D printing was another emerging trend, which by the 2020s had become a mainstream consumer phenomenon for the home* and was increasingly used in large-scale formats and industrial settings too; even for the construction of buildings and vehicles. By 2040, traditional manufacturing jobs had been largely eliminated in the US* and many other Western societies. Meanwhile, the ability to quickly and cheaply print shoes, clothing and other personal items was impacting large numbers of jobs in developing nations, particularly those in Asian sweatshops.*

The tide of change was undeniable. All of these developments led to a growing unemployment crisis; not immediately and not everywhere, but enough to become a major issue for society. Unions in the past had attempted to protect their workers from such impacts, but memberships were at record lows – and in any case, they had never been particularly effective in slowing the march of technology and economics.

 

future unemployment trends 2025 2050 timeline

Sources: World Bank* and the Oxford Martin Programme on the Impacts of Future Technology*

 

Governments were now facing profound questions about the nature and future direction of their economies. If more and more people were being made permanently unemployed, how could they afford to buy goods and services needed to stimulate growth? Where would tax revenues come from? Confronted by increasingly angry and desperate voters, now protesting on scales dwarfing Occupy Wall Street, many leaders between 2025 and 2050 began formulating a welfare system to handle these extraordinary circumstances. This had gone by several names in the past – such as basic income, basic income guarantee, universal basic income, universal demogrant and citizen's income – but was most commonly referred to as the unconditional basic income (UBI).

The concept of UBI was not new. A minimum income for the poor had been discussed as far back as the early 16th century; unconditional grants were proposed in the 18th century; the two were combined for the first time in the 19th century to form the idea of unconditional basic income.* This theory received further attention during the 20th century. The economist Milton Friedman in 1962 advocated a guaranteed income via a "negative income tax". Martin Luther King Jr. in his final book, Where Do We Go from Here: Chaos or Community?, wrote: "I am now convinced that the simplest approach will prove to be the most effective – the solution to poverty is to abolish it directly by a now widely discussed measure: guaranteed income." US President Richard Nixon supported the idea and tried (unsuccessfully) to pass a version of Friedman's plan. His opponent in the 1972 election, George McGovern, also suggested a guaranteed annual income.

Traditional welfare payments, such as housing benefit and jobseeker's allowance, were heavily means-tested. In general, they provided only the bare minimum for survival and well-being of a household. By contrast, UBI would be more generous. Unconditional and automatic, it could be paid to each and every individual, regardless of other income sources and with no requirement for a person to work or even be looking for work. The amount paid would make a citizen "economically active", rather than idle, in turn stimulating growth. Some would use the UBI to return to education and improve their skills. Those with jobs would continue to earn more than those who did not work.

In most countries, UBI would be funded, in part, by increased taxation on the very rich.* At first glance, this appeared to be a radical left-wing concept involving massive wealth redistribution. For this reason, opposition was initially strong, particularly in the US. As time went by, however, the arguments in favour began to make sense to both sides of the political spectrum. For example, UBI could also be funded by cutting dozens of entitlement programs and replacing them with a single unified solution, reducing the size of government and giving citizens more freedom over their personal finances. Demographics in the US were also shifting in ways that made it very difficult for Republicans to maintain their traditional viewpoints.* With pressure mounting from mass social protests – and few other plausible alternatives to stimulate consumer spending – bipartisan support was gradually achieved. Nevertheless, its adoption in the United States (as with universal healthcare) occurred later than most other countries. Switzerland, for example, conducted a popular referendum on UBI as early as 2016,* with a proposed amount of $2,800/month. Meanwhile, a small-scale pilot project in Namibia during 2004 cut poverty from 76% to 37%, boosted education and health, increased non-subsidised incomes, and cut crime.* An experiment involving 6,000 people in India had similar success.*

In the short to medium term, rising unemployment was highly disruptive and triggered an unprecedented crisis.* For the US, in particular, it led to some of the biggest economic reforms in modern history.* In the longer term, however, it was arguably a positive development for humanity.* UBI acted as a temporary bridge or stepping stone to a post-scarcity world, with even greater advances in robotics and automation occurring in the late 21st century and beyond.**

 

 

2025-2035

Small modular nuclear reactors gain widespread adoption

Small modular reactors (SMRs) are a new class of smaller, cheaper, safer and more adaptable nuclear power plants that gain widespread adoption from the mid-2020s to the mid-2030s.* They are defined by the International Atomic Energy Agency as generating an electric output of less than 300 MW, reaching as low as 10 MW for some of the smallest versions. This is compared to larger, conventional reactors, which typically produce 1 to 2 GW.

Electricity was first generated from nuclear energy in 1951, during tests of an experimental reactor in the high desert of Idaho. The original output was estimated at 45 kW. In subsequent decades, reactors grew much larger, with outputs reaching the gigawatt scale. Later, more than half a century after the first commercial use of nuclear energy, reactor designs with lower electrical outputs were starting to be developed again.

In the early decades of the 21st century, the need for small modular reactors was arising due to several different factors. Firstly, they could be built at a much lower cost than traditional reactors, making them less risky from an investment viewpoint. They were especially attractive to developing nations (which lacked the ability to spend tens of billions of dollars on infrastructure), to remote communities without long distance transmission lines, and for areas with limited water and/or space.

SMRs could be designed with flexibility in mind. Unlike the larger power plants (most of which used "light water" designs based on uranium fuel and ordinary water for cooling), they were being developed in a broad range of shapes and sizes, with various fuels and cooling systems. Some could even use existing legacy radioactive waste as an energy source. Among the most promising concepts were those able to be assembled in factories and delivered in sealed containers – meaning the plant would never require decommissioning, but could simply have its power source replaced like a battery, further reducing costs. In a similar vein, some of the other proposed concepts generated far less waste than conventional reactors. SMRs would also allow increments of capacity to be gradually added as power needs increased over time.

There were yet more advantages. The smaller size and safety features of the SMRs would mean both a reduced environmental impact and little or no damage from an accident – easing public concerns – while ensuring a faster and simpler planning process. Being much smaller and easier to construct, the time required from ground breaking to commercial operation could be greatly reduced, compared to larger power plants that often required decades to plan, build and test. Additionally, the threat of nuclear weapons proliferation was eliminated by the design, materials and safety aspects of SMRs.

This variety and flexibility, alongside the demand for lower carbon energy, was leading to a renaissance in nuclear power generation. By the mid-2010s, around 50 experimental prototype SMRs were in development (excluding nuclear submarines and ships). A small number achieved commercial viability in the early 2020s** and these paved the way to greater adoption through the following decade.* By 2035, the SMR industry is generating several tens of gigawatts in energy and is valued at nearly half a trillion dollars worldwide.*

 

small modular nuclear reactor future timeline 2020 2025 2030 2035

 

 

Manned missions to the Moon

During this period, at least two space agencies conduct manned exploration of the Moon. This occurs in parallel with private commercial ventures including lunar tourists. The huge length of time since Apollo had led to a perception among the general public that space travel was making little or no progress. In reality, a number of developments were underway.

Perhaps most notable was the rapid emergence of China. In 2003, its first astronaut had been placed into orbit. This was followed by two additional manned missions in 2005 and 2008. Within a decade, China was building its first space station,* while launching probes to the lunar surface including a sample return mission.* The country had even greater ambitions, however, putting its first astronauts on the Moon by the late 2020s.* This would take place in the southern polar region, with abundant solar energy, relatively stable temperatures and the presence of water-ice.*

Russia was making strides too. After years of stagnation, its space program saw a resurgence in the 2010s with a dramatic increase in funding.* A new spaceport was operational by 2018, while rockets were being developed based on cheaper acetylene and ammonia fuel,* along with huge payloads up to 180 tons. By the early 2030s, this combination of better infrastructure and technology, increased funding and government commitment would lead to a manned Russian presence on the Moon.*

 

china moon 2025
China on the Moon, 2025-2030.

 

NASA had been developing a new rocket – the Space Launch System (SLS)* – along with a manned spacecraft placed at Earth-Moon Lagrange Point 2.* The agency's longer term goals included sending astronauts to Mars, rather than the Moon's surface.* However, private commercial ventures, such as inflatable modules designed by Bigelow Aerospace, were also getting underway and involved some testing and collaboration with NASA.** Additionally, the SLS had performed lunar orbits during its testing,* along with crewed asteroid missions.*

The European Space Agency (ESA) was less vocal than other agencies when it came to manned lunar missions. Announced in 2001, its Aurora Programme included the goal of sending astronauts to the Moon and Mars during the late 2020s and early 2030s. However, these plans were quietly dropped after being challenged by ESA's main financial contributors (France, Germany and Italy). Lacking direction and leadership, the programme became focused on robotic-only exploration of Mars.*

Other nations had shown an interest in manned lunar exploration and even permanent bases – including Japan, India and Iran. However, despite making significant progress, a lack of technical experience and the sheer financial commitment needed would postpone their goals until somewhat further into the future.

 

 

The Advanced Technology Large-Aperture Space Telescope (ATLAST) conducts its life-searching mission

The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a major new space observatory launched by NASA. It has substantially higher resolution than Hubble and the James Webb Space Telescope (JWST), with a primary mirror that dwarfs both. Its angular resolution is 10 times better than JWST, with a sensitivity limit up to 2,000 times better than Hubble.

 

advanced technology large aperture space telescope 2025 2030 2035

 

ATLAST is a flagship mission of the 2025-2035 period, designed to address one of the most compelling questions of our time: is there life elsewhere in the Galaxy? It attempts to accomplish this by detecting "biosignatures" (such as molecular oxygen, ozone, water and methane) in the spectra of terrestrial exoplanets.*

Operating in the ultraviolet, optical and infrared wavelengths, its mirror is so powerful that it can distinguish the atmosphere and surface of Earth-sized exoplanets, at distances up to 150 light years – including their climate and rotation rate.* ATLAST enables astronomers to glean information on the nature of dominant land features, along with changes in cloud cover. It even has the potential to detect seasonal variations in surface vegetation.

In addition to searching for life, ATLAST has the performance required to reveal the underlying physics driving star formation and to trace complex interactions between dark matter, galaxies and the intergalactic medium.

The observatory is placed at Sun-Earth Lagrange point L2. Servicing and maintenance are performed using a robotic ferry, with occasional help from astronaut crews flying in the Orion spacecraft (which allows NASA to gain experience for manned Solar System missions). Like the Hubble Space Telescope, ATLAST has a 20-year lifespan. By the 2050s, it is being succeeded by telescopes of truly prodigious magnitude, offering detailed close-up views of distant exoplanets.*

 

advanced technology large aperture space telescope 2025 2030 2035
Credit: Northrop Grumman Aerospace Systems & NASA/STScI

 

 

Mouse revival from cryopreservation

Cryopreservation – a process where cells or whole tissues are preserved by cooling to sub-zero temperatures – witnesses major advances during this period. By far the most notable achievement is a mouse being revived from storage at −196°C.

In the past, among the most serious challenges to overcome had been damage from crystallisation as a result of the freezing process. During the first decade of the 21st century, this problem was comprehensively solved by the development of cryoprotectants offering complete vitrification. In other words, the body being preserved was turned into a glass, rather than crystalline solid.

A number of issues remained, however – such as the toxicity of these cryoprotectants, as well as the fracturing that occurred due to simple thermal stress. In subsequent decades, research saw a dramatic acceleration and resulted in progressively more successful techniques, culminating in the mouse revival.*

Although a human revival is still many years away (and fraught with ethical, legal and social hurdles), such a feat now appears to be a realistic prospect. Once considered the stuff of science fiction, cryopreservation becomes an increasingly regular feature in mainstream scientific literature. Many new startup companies are formed around this time, promising to "resurrect" people at some future date.

 

future prospects cryopreservation
Photo courtesy of Alcor Life Extension Foundation.

 

 

2025-2030

The threat of bioterrorism is peaking

Biotechnology is now sufficiently advanced, widespread and inexpensive that a small group of people – or even a single person – can threaten the survival of humanity. Desktop fabrication labs, genetic databases and AI software are becoming accessible to the public. These enable the rapid research and synthesis of DNA, for those with appropriate technical knowledge.

Criminals have already begun to exploit this – providing access to drugs and other substances without prescriptions, for example (like offshore Internet pharmacies of earlier decades) – and now terrorists are making use of them too.

In the past, government agencies were able to combat bioterrorism by restricting access to pathogens themselves. This was achieved by regulating the laboratory use of potentially deadly agents, such as the Ebola virus. However, the advent of DNA synthesis technology means that simply restricting access to the actual pathogen no longer provides the security it once did. Since the gene sequence is a "blueprint", i.e. a form of coded information, once an organism has been sequenced it can be synthesised without using culture samples or stock DNA.

As synthesis technology has continued to advance, it has become cheap, more accessible and far easier to utilise. Like the personal computer revolution of the early 1980s, biotechnology is diffusing into mainsteam society. At the same time, the ongoing need for medical breakthroughs has necessitated a gradual easing of database regulations. Furthermore, the DNA sequences for certain pathogens – such as anthrax, botulism and smallpox – have already been available on the Internet, for decades.

It's therefore become alarmingly easy to produce a new virus (possibly an even deadlier version of an existing one) using a relatively low level of knowledge and equipment. Another, more sinister consequence, is the ability to target specific races or genetic groups of people.

One such "home made" bioweapon is unleashed around this time, with devastating results. There are significant casualties worldwide.* The threat begins to subside in the 2030s, as new defensive technologies – such as nanobots – become available to the general population. These devices, injected into the bloodstream, can be programmed to identify and eliminate harmful pathogens.

 

bioterrorism future 2020 2025 2030 timeline terrorism biohazard synthetic genomics

 

 

Hypersonic missiles are in military use

When launched, cruise missiles have typically reached 500-600 mph (800-965 km/h). However, a new generation of air-breathing supersonic combustion ramjet (scramjet) engines is now emerging on the battlefield after many years of testing and development. These are capable of exceeding Mach 5, or about 3,840 mph (6,150 km/h), making them hypersonic.*

As well as enhancing the responsiveness of a warfighter, the survivability of these missiles as they fly over enemy territory is greatly improved, since they are difficult (if not impossible) to hit at such a high speed.

Now that military use of scramjets has been perfected, commercial use will soon follow. In the 2030s, the first hypersonic airliners begin to appear, capable of travelling around the globe in under four hours.**

 

future weapons hypersonic sound 2020 2025 2030 technology timeline

 

 

Some of Britain's most well-known animal species are going extinct

Due to a combination of habitat loss, agricultural intensification, road accidents, pesticides, pollution and other human interference, some of Britain's most iconic and well-known animals are disappearing. This includes hedgehogs, red squirrels, cuckoos, brown hares, Scottish wildcats, natterjack toads, red-necked phalaropes, woodland grouse, and turtle doves.*** Many butterfly species have also declined drastically.*

 

britain extinct animals 2025 2030

 

 

Rhinos are going extinct in the wild

Rhinos are among the largest remaining megafauna, a class of giant animals that were common in the last ice age.* Of the five main species of rhino, the white rhinoceros is the heaviest, with adults weighing 3,500 kg (7,700 lb) and reaching a head-to-body length of 4.6 m (15 ft).

Because of their size, rhinos have few natural predators other than humans. Alongside the mammoth, woolly rhinos became numerous during the Last Glacial Maximum (20-25,000 years ago), but were eventually hunted to extinction by early man. In modern times, the remaining species have declined even more rapidly. The black rhino, for example, fell in numbers from 70,000 in the late 1960s to only 3,600 in 2004.* A subspecies – the West African black rhino – was declared extinct in 2011, while the Javan rhino died out in Vietnam the same year.

The early 21st century witnessed an alarming upward trend in poaching. By 2012, more rhinos were being killed in South Africa during a single week than were killed in a whole year a decade previously. Fetching a street value of £40,000 a kilo, rhino horn was becoming even more valuable than gold, due to the misguided perception that it cured cancer. It was also popular in some cultures as a form of jewellery. Organised crime had become involved, with gangs now using hi-tech equipment for industrial-scale killing.

Despite conservation efforts, the situation continued to worsen. By the late 2020s, the last remaining rhinos are disappearing from the wild.* Only a handful remain in captivity. It is doubtful that any viable breeding population can be restored anytime soon, if ever.

 

rhino timeline rhinos extinct by 2015 2020 2025

2025

Human brain simulations are becoming possible

The exponential growth of computer processing power has made it possible to form accurate models of every part of the human brain.** Between 2000 and 2025, there is a millionfold increase in computational power, together with vastly improved scanning resolution and bandwidth.

Until recently, only separate regions of the brain had been modelled in any detail – but scientists are now able to combine them into a complete, real-time simulation. Like the Human Genome Project, there were many in the scientific community who doubted the brain could be mapped so quickly. Once again, they failed to account for the exponential (rather than linear) growth of information technology.

 

moore law human brain supercomputer future trends 2020 2025 2030 graph chart diagram simulation


 

Medical nanobots are being developed

Nano-scale robots – orders of magnitude smaller than earlier micro-sized versions – are being developed as part of efforts to improve healthcare. In some countries they have reached the human trial stage and will soon be approved by government. Utilised in medical research and treatments, their size will enable them to reach places in the body that were simply inaccessible before or too delicate for conventional instruments to operate on.

In the coming years, the most important breakthroughs will be in the treatment of cancer. Using nanobots, it will be possible to detect tumours earlier than ever before and target them with far more precision. Even patients who would previously have been classed as terminally ill will routinely be saved. Monitoring of heart conditions, neurological disorders and many other illnesses will also improve dramatically. Combined with enormous strides in stem cell research, this will create a new generation of medical treatments reaching a whole new level of sophistication and efficiency.

The nanobots themselves are built on a molecule-by-molecule basis, via positionally-controlled diamond mechanosynthesis and diamondoid nanofactories. Each robot is capable of propelling itself using tiny motors and is equipped with microscopic sensing, guidance and communication devices.

 

 

 

3D-printed human organs

Additive manufacturing, also known as 3D printing, was first developed in the mid-1980s. Initially used for industrial applications such as rapid prototyping, it fell dramatically in cost during the 2010s and became available to a much wider audience.*

Arguably the most transformative breakthroughs were occurring in health and medicine. Customised, 3D-printed body parts were saving peoples' lives and included artificial jaw bones,* bioresorbable splints for breathing* and replacement skull parts,* among many other uses. Non-critical applications included dental implants* and exoskeletons to assist with mobility and joint movement.*

Even greater advances were taking place, however. 3D printing was no longer limited to inorganic materials like polymers or metals. It was being adapted to construct living, biological systems. Layer after layer of cells, dispensed from printer heads, could be placed exactly where needed with precision down to micrometre scales. Initially demonstrated for simple components like blood vessels and tissues,** more sophisticated versions later emerged in combination with scaffolds to hold larger structures in place. Eventually, the first complete organs were developed with sufficient nutrients, oxygen and growth vectors to survive as fully-functioning replacements in mouse models.

By 2025 – after testing on animals – customised 3D-printing of major human organs is becoming feasible for the first time.** Although yet to be fully perfected (as certain types of organs remain too complex), this is nevertheless a major boost for life extension efforts. In the coming decades, more and more of the 78 organs in the human body will become printable.*

 

future 3d printing technology
Credit: ExplainingTheFuture.com

 

 

 

 

China is becoming highly urbanised

Much of China is now highly urbanised and densified. Its growing economy has led to the construction of literally tens of thousands of new skyscrapers all over the country. There are now over 200 cities with more than a million inhabitants, compared with just 35 in the whole of Europe circa 2010.* Even remote and isolated regions have seen development on an unprecedented scale. Widespread infrastructure such as maglev trains, airports, bridges and tunnels is forming an extensive network to all corners of the nation, leaving few areas untouched. China is well on its way to becoming a developed country.

Some of the largest metropolitan areas – such as Hong Kong and Shenzhen – have actually begun to overlap and form mega-cities overtaking Tokyo in population and land area. Many of the world's tallest buildings can now be found in China, including kilometre-high "supertalls".

All of this has had a considerable impact on the price of steel and other materials, leading to cutbacks of many projects in Europe, America and elsewhere. The rise of neighbouring India is adding to this. The West now has reduced influence on setting the price of metals. Meanwhile, enormous profits are being made by construction and mining firms, leading to many high profile takeovers and acquisitions. At the same time, record accident numbers during this time – as a result of so much construction activity – are leading to tighter industrial regulations and improved safety.

As China grows, its energy requirements are soaring. The country has prepared for this by strengthening relations with Central Asian countries and importing more oil and gas from them, especially Turkmenistan which has made significant new discoveries. China's entry into Central Asia was also partly motivated by the need to reduce its dependency on (a) the Middle East, and (b) the Malacca Strait for shipping oil from the Persian Gulf and Africa; this stretch of water had become increasingly vulnerable to pirate attacks, and was the subject of ongoing political tensions regarding its control.

As well as strengthening its oil imports, gains have been made from efficiency and conservation programmes, along with increased use of nuclear power. By 2025, China's nuclear generating capacity is nearly 150 billion kilowatthours (khwh), passing that of both Canada and Russia.* In the near future, this will increase still further, as 4th generation plants become available. Falling prices have also greatly boosted solar and wind.

 

future beijing china skyline 2025 2020 timeline
© Chris Jewiss | Dreamstime.com

 

Vertical farms are common in cities

With a total population fast approaching 8 billion, world food demand has continued to climb. At the same time, however, the increasingly dire effects of climate change, as well as other environmental factors, are now having a serious impact. Droughts, desertification and the growing unpredictability of rainfall are reducing crop yields in many countries, while shrinking fossil fuel reserves are making large-scale commercial farming ever more costly. Decades of heavy pesticide use and excess irrigation have also played a role. The United States, for example, has been losing almost 3 tons of topsoil per acre, per year. This is between 10 and 40 times the rate at which it can be naturally replenished – a trend that, if allowed to continue, would mean all topsoil disappearing by 2070.* As this predicament worsens and food prices soar, the world is now approaching a genuine, major crisis.*

Amid the deepening sense of urgency and panic, a number of potential solutions have emerged. One such innovation has been the appearance of vertical farms. These condense the enormous resources and land area required for traditional farming into a single vertical structure, with crops being stacked on top of each other like the floors of a building. Singapore opened the world's first commercial vertical farm in 2012.* By the mid-2020s, they have become widespread, with most major urban areas using them in one form or another.*

Vertical farms offer a number of advantages. An urban site of just 1.32 hectares, for example, can produce the same food quantity as 420 hectares (1,052 acres) of conventional farming, feeding tens of thousands of people. Roughly 150 of these buildings, each 30 stories tall, could potentially give the entire population of New York City a sustainable supply of food.* Genetically modified crops have increased in use recently* and these are particularly well-suited to the enclosed, tightly-controlled environments within a vertical farm. Another benefit is that food can then be sold in the same place as it is grown. Farming locally in urban centres greatly reduces the energy costs associated with transporting and storing food, while giving city dwellers access to fresher and more organic produce.

Another major advantage of vertical farming is its sustainability. Most structures are primarily powered on site, using a combination of solar panels and wind turbines. Glass panels coated in titanium oxide cover the buildings, protecting the plants inside from any outside pollution or contaminants. These are also designed in accordance with the floor plan to maximise natural light. Any other necessary light can be provided artificially. The crops themselves are usually grown through hydroponics and aeroponics, substantially reducing the amount of space, soil, water and fertiliser required.

Computers and automation are relied upon to intelligently manage and control the distribution of these resources. Programmed systems on each level control water sprayers, lights and room temperature. These are adjusted according to the species of plant and are used to simulate weather variations, seasons and day/night cycles. Some of the more advanced towers even use robots to tend to crops.* Excess water lost through evapotranspiration is recaptured via condensers in the ceiling of each level, while any runoff is funnelled into nearby tanks. This water is then reused, creating a self-contained irrigation loop. Any water still needed for the system can be filtered out of the city's sewage system.

Vertical farms also offer environmental benefits. The tightly controlled system contained in each structure conserves and recycles not just water – but also soil and fertilisers such as phosphorus, making the total ecological footprint orders of magnitude smaller than older methods of agriculture. On top of that, the reduced reliance on arable land helps to discourage deforestation and habitat destruction. Vertical farms can also be used to generate electricity, with any inedible organic material transformed into biofuel, via methane digesters.

 

vertical farm future farming farmscraper 2020 2020s 2025 urban sustainability
Credit: Chris Jacobs, Gordon Graff, Spa Atelier

 

Solid waste is reaching crisis levels

Solid waste has been accumulating in urban areas and landfills for many decades. Poor funding for waste disposal and lack of adequate recycling measures, together with population growth and associated consumption have ensured a never-ending rise in trash levels. By the mid-2020s, global output of solid waste has almost doubled to nearly 2.5 billion tons annually, compared to 1.4 billion in 2012.** The cost of dealing with this quantity of garbage has nearly doubled as well, rising to $375 billion annually.

Developing nations, lacking the money and infrastructure to properly dispose of their trash, face the greatest crisis, with solid waste increasing five-fold in some regions. Public health is being seriously affected, since groundwater is becoming more and more polluted as a result. E-waste is proving to be even more damaging. In India, for example, discarded cellphones have increased eighteen-fold.* Rapid advances in technology, ever-more frequent upgrades to electronic products, and the aspiration for Western lifestyles have only exacerbated this situation.

Developed nations are better able to handle the problem, but since only 30% of their waste is recycled it continues to build rapidly. Plastics are a particular problem, especially in oceans and rivers, since they require centuries to fully degrade.* As well as direct environmental damage, this waste is releasing large amounts of the greenhouse gas methane, which contributes to global warming.* Public activism, though increasing at this time, has little effect in halting the overall trend.

 

solid waste future impacts

 

Kivalina has been inundated

Kivalina was a small Alaskan village located on the southern tip of a 7.5 mi (12 km) long barrier island. Home to around 400 indigenous Inuit, its people survived over countless generations by hunting and fishing. During the late 20th and early 21st centuries, a dramatic retreat of Arctic sea ice left the village extremely vulnerable to coastal erosion and storms. The US Army built a defensive wall, but this was only a temporary measure and failed to halt the advancing sea. By 2025, Kivalina has been completely abandoned, its small collection of buildings disappearing beneath the waves. The Alaska region has been warming at twice the rate of the USA as a whole, affecting many other Inuit islands. At the same time, opportunities are emerging to exploit untapped oil reserves made available by the melting ice.*

 

kivalina alaska global warming

 

Completion of the East Anglia Zone

The United Kingdom, one of the best locations for wind power in the world, greatly expanded its use of this energy source in the early 21st century – offshore wind in particular. With better wind speeds available offshore compared to on land, offshore wind's contribution in terms of electricity supplied could be higher, and NIMBY opposition to construction was usually much weaker. The United Kingdom became the world leader in offshore wind power when it overtook Denmark in 2008. It also developed the largest offshore wind farm in the world, the 175-turbine London Array.

As costs fell and technology improved, various new projects got underway. By 2014, the United Kingdom had installed 3,700MW – by far the world's largest capacity – more than Denmark (1,271MW), Belgium (571MW), Germany (520MW) the Netherlands (247MW) and Sweden (212MW) combined. Growing at between 25 and 35 per cent annually, the United Kingdom's offshore wind capacity was on track to reach 18,000MW by 2020,* enough to supply one-fifth of the country's electricity.

The largest of these projects, known as "Dogger Bank", was built off the northeast coast of England in the North Sea. This gigantic installation featured 600 turbines covering an area the size of Yorkshire* and generating 7,200MW from the early 2020s. Eight other major sites were being planned around the United Kingdom* with potential for up to 31,000MW.

Among the biggest of these other sites was the East Anglia Zone. This was divided into six separate areas, each with 1,200MW capacity for a combined total of 7,200MW – the same as Dogger Bank. Each turbine would have a rotor diameter of 200m, and a tip height up to 245m. The first stage received planning permission in 2014 and was operational by 2019,* providing a clean, renewable energy source for 820,000 homes. The remaining five stages were approved between 2016 and 2020,* followed by a similar schedule for construction. When fully completed in 2025, the whole East Anglia Zone would supply a total of four million homes.

With ongoing concerns over energy and climate change, offshore wind capacity in the United Kingdom continued to grow rapidly in subsequent decades. Eventually it became integrated into a continent-wide "supergrid" stretching across Europe.* This was followed by "peak wind" in the late 21st century* as the resources utilised offshore reached a theoretical maximum of 2,200 GW* – though alternative energies such as fusion had arrived by then.*

 

Click to enlarge

east anglia zone timeline

 

Completion of Masdar City

Masdar City is the latest in a series of hi-tech, self-sufficient, eco-friendly cities appearing around the world. Construction of this massive project began in 2008; the first phase was completed in 2015 and the final phase is finished in 2025.* By now, it covers an area totalling 6 sq km (2.3 sq mi) and is home to over 50,000 residents.

Like the Great City in China, traditional motor cars are banned from the city. Most travel can be accomplished via public mass transit and personal rapid transit (PRT) systems, with existing road and railways connecting to other locations outside the city.* The absence of motor vehicles, coupled with Masdar's perimeter wall, allows for narrow and shaded streets, keeping out hot desert winds and helping funnel cool breezes around the city. At street level, temperatures are 12-15°C lower than the rest of Abu Dhabi.* Masdar City is carbon neutral, powered entirely by renewable energy and includes the largest solar power plant in the Middle East. Vertical farms, now emerging in many urban regions, provide much of the city's food.*

Later in the 21st century, this style of architecture will come to dominate the world – especially in the Middle East – as nations everywhere are forced to decarbonise their economies, adapt to higher temperatures, reduce waste and lower their reliance on foreign imports. For some countries, however, these efforts will come too late.*

 

Click to enlarge

masdar city 2025 2020 2016 uae future sustainable
Copyright © Masdar City

 

 

Contact with the Voyager probes is lost

Voyager I is the farthest man-made object from Earth – more than 14 billion miles (22 billion km) away, or 150 times the distance between the Sun and Earth. Both Voyager I and its sister probe, Voyager II, have remained operational for nearly half a century, continuing to transmit data back to NASA. They have left the heliosphere and are now headed towards the Oort Cloud. By 2025, however, onboard power is finally starting to wane. Instruments begin shutting down, one by one, until eventually all contact is lost.*

Each probe carries a gold-plated audio-visual disc, in the event that either spacecraft is ever found by intelligent alien life. The discs carry images of Earth and its lifeforms, a range of scientific information, along with a medley, "Sounds of Earth", that includes the sounds of whales, a baby crying, waves breaking on a shore, a variety of music from different cultures and eras, plus greetings in 60 different languages.*

 

voyager 1 diagram

 

 

 

 

High-speed rail networks are being expanded in many countries

Many countries have radically overhauled their rail transport infrastructure.

In Spain, more than 10,000km of high-speed track has been laid, making it the most extensive network in the world. 90 percent of the country's population now live within 50 km of a bullet train station.*

In Britain, the first phase of a major high-speed rail line is nearing completion. This will travel up the central spine of the country – connecting London with England's next largest city, Birmingham. It will eventually be expanded to Manchester and the north. Trains will be capable of reaching 250 mph, slashing previous journey times.*

In Japan, Tokyo will soon be connected with Nagoya via superfast magnetic levitation trains. Tests conducted in previous decades showed that it was possible to build a railway tunnel in a straight route through the Southern Japanese Alps. The first generation of these trains already held the world speed record, at 581 km/h (or 361 mph); but recent advances in carriage design have pushed this still further, to speeds which are fast enough to compete with commercial airliners.*

Many other countries are investing in high-speed rail during this time, due to its speed and convenience, along with soaring fuel costs and environmental factors which have made car and air travel less desirable. Even America – which for decades had neglected its rail network – is making big progress in this area.*

 

high speed rail map 2025 future
Source: Federal Railroad Administration

 

 

A comprehensive overhaul of the U.S. airspace system is complete

The final upgrades of the Next Generation Air Transportation System (NextGen) are completed this year. This has involved a complete overhaul of the existing air transport network. Many aspects of the National Airspace System (NAS) had been failing because of a reliance on largely obsolete technology. The navigation system, for example, which relied on ground-based radar beacons, was based on technology from the 1940s.

NextGen brings pervasive upgrades and improvements to the entire system during the 2010s and early 2020s. This includes physical infrastructure as well as computer systems. Hundreds of new ground-based stations are built to allow satellite surveillance coverage of nearly the entire country. New safety and navigation procedures are introduced that markedly reduce flight times, while offering a more dynamic method of air traffic control.

 

future air travel technology 2020 2025 2050 2020s

 

Advances in computer power and digital communication have produced what is now a far more integrated and efficient national system. One of the largest technical advances is the complete replacement of the previous radar navigation system with a modern, GPS-based version. This creates detailed, three-dimensional highways in the sky, and takes into account variations in topography and weather – enabling pilots to fly shorter, more precise routes. By 2018, this system was in place at every major US airport.

Once on the runway, taxiing planes are guided by automated systems. These use data gathered on the position of every other plane and vehicle to present pilots and controllers with detailed, real-time traffic maps of the tarmac. Runway capacity is increased with the introduction of multiple take-off and landing pathways, as opposed to the older, single route approach.

Overall, these upgrades offer substantial improvements in flight-times, air pollution and fuel consumption. Delays are reduced by nearly 40%, saving tens of billions of dollars. Over 1.4 billion gallons of fuel are saved and CO2 emissions are cut by 14 million metric tons. These numbers will continue to improve steadily over the years.*

Aircraft themselves are evolving in form, function and efficiency. A number of striking new designs have emerged with significant technological and environmental benefits.*

 

future air travel technology 2020 2025

 

 

U.S. fuel economy standards have dramatically improved

In addition to rail and air travel (described earlier), road vehicles are witnessing major improvements. In the U.S., fuel economy standards have reached almost 55 miles per gallon (mpg) for cars and 39 miles per gallon for trucks. In other words, these vehicles now travel nearly twice as far on the same amount of fuel as they did in 2010.

This surge in efficiency, enacted by the Obama administration, was prompted by concerns over energy security and reducing U.S. dependence on foreign oil. Another factor was the urgent need to reduce carbon emissions. Light duty vehicles reached an average of 34 mpg by 2016 and these advances continued into the 2020s.* Around 6 billion metric tons of greenhouse gases have now been curtailed by this program – more than the total CO2 emitted by the entire United States in 2010.

Electric and hybrids are growing rapidly in number thanks to falling costs and improvements in battery life. By the early 2030s, they will account for the majority of new vehicles on the nation's roads.

 

2025 fuel economy standards

 

 

Railguns are in use by the U.S. navy

After years of research and development, railguns are now in common use on U.S. naval ships.* Unlike traditional artillery, which create force with explosive materials, the railgun is powered entirely by electricity from the ship's grid. It works by storing up a supply of electrical power, using what is called a pulse-forming network, which is then converted to an electromagnetic pulse. This travels up the barrel along parallel tracks of magnetic rails, forcing the projectile out of the gun, away from the power source.

The weapon is capable of firing an 18-inch metal projectile, itself equipped with complex internal guidance systems, over 100 miles at close to mach 6. This is fast enough to set the air around the projectile ablaze, while delivering it to targets in mere minutes. Explosive rounds are unnecessary, since the kinetic energy released upon impact yields more power than traditional bombs of much greater size. New rapid-fire systems allow for a launch rate of around ten per minute.

A number of technical issues first had to be overcome to reach this point though. Advances in materials technology were required to keep the barrel from wearing out after repeated firings, while the projectiles needed to be outfitted in a way that protected internal guidance systems during launch. New cooling techniques also had to be introduced. The guns themselves originally required more electricity than standard naval ships could provide. This was overcome with advances in energy efficiency, along with ultra-dense storage batteries.

In combat situations, the railgun offers major benefits. It has greater accuracy over extremely long ranges. It can be used as initial cover fire for marines landing on shore, or as a defense against incoming missiles and other threats. Ships armed with these hi-tech weapons are able to attack with virtual impunity, safe from almost any retaliatory strike. Railguns become widespread around the world in the 2030s, adopted by many other navies. This devastating form of weaponry provides a considerable advantage in modern conflicts.**

 

 

 

 
   
« 2024 2026 »
   
     
 
 
                  Share Share
 
 
     
     
   
     
     
 

References

1 Will automation lead to fewer jobs in 10 years? Short answer, yes., Institute for the Future:
http://www.iftf.org/future-now/article-detail/will-automation-lead-to-fewer-jobs-in-10-years-probably-yes/

Accessed 14th June 2015.

2 We've reached a tipping point where technology is now destroying more jobs than it creates, researcher warns, Business Insider:
http://uk.businessinsider.com/technology-is-destroying-jobs-and-it-could-spur-a-global-crisis-2015-6
Accessed 14th June 2015.

3 Harold Meyerson: Technology and trade policy is pointing America toward a job apocalypse, Washington Post:
http://www.washingtonpost.com/opinions/harold-meyerson-technology-and-trade-policy-is-pointing-america-toward-a-job-apocalypse/2014/03/26/ba331784-b513-11e3-8cb6-284052554d74_story.html
Accessed 14th June 2015.

4 Raising America's Pay: Why It's Our Central Economic Policy Challenge, Economic Policy Institute:
http://www.epi.org/publication/raising-americas-pay/
Accessed 14th June 2015.

5 Why Wages Won't Rise, Robert Reich:
http://robertreich.org/post/107998491550
Accessed 14th June 2015.

6 Eric Schmidt Just Revealed A Key Truth About The Economy That Very Few Rich Investors And Executives Want To Admit ..., Business Insider:
http://www.businessinsider.com/eric-schmidt-on-inequality-2014-1?IR=T
Accessed 14th June 2015.

7 Ultra-fast, the robotic arm catches objects on the fly, YouTube:
https://www.youtube.com/watch?v=M413lLWvrbI
Accessed 14th June 2015.

8 Disney teaches a humanoid robot to play catch and juggle balls, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/11/24-2.htm
Accessed 14th June 2015.

9 Robot hand is unbeatable against a human opponent, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/06/27.htm
Accessed 14th June 2015.

10 Industrial Robot Wields A Blade Like A Master Swordsman, Vocativ:
http://www.vocativ.com/video/tech/machines/industrial-robot-wields-a-blade-like-a-master-swordsman/
Accessed 14th June 2015.

11 Table tennis: man vs machine, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/03/10.htm
Accessed 14th June 2015.

12 Beer-pouring robot programmed to anticipate human actions, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/05/30.htm
Accessed 14th June 2015.

13 Robots that can touch and feel?, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/06/24.htm
Accessed 14th June 2015.

14 Robot masters new skills through trial and error, Future Timeline Blog:
http://www.futuretimeline.net/blog/2015/05/28.htm
Accessed 14th June 2015.

15 Watson (computer), Wikipedia:
https://en.wikipedia.org/wiki/Watson_%28computer%29
Accessed 14th June 2015.

16 AI software can identify objects in photos and videos at near-human levels, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/11/21.htm
Accessed 14th June 2015.

17 New AI program interacts like a human, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/10/6.htm
Accessed 14th June 2015.

18 Computer program recognises emotions with 87% accuracy, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/08/24-2.htm
Accessed 14th June 2015.

19 Cloud computing platform for robots launched, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/03/12-2.htm
Accessed 14th June 2015.

20 Artificial intelligence breakthrough: CAPTCHA 'Turing Test' is passed, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/10/29-2.htm
Accessed 14th June 2015.

21 "...robotics and artificial intelligence will permeate wide segments of daily life by 2025, with huge implications for a range of industries such as health care, transport and logistics, customer service, and home maintenance."
See AI, Robotics, and the Future of Jobs, Pew Research:
http://www.pewinternet.org/2014/08/06/future-of-jobs/
Accessed 14th June 2015.

22 Self-driving trucks are going to hit the US economy like a human-driven truck, Quartz:
http://qz.com/417014/self-driving-trucks-are-going-to-hit-the-us-economy-like-a-human-driven-truck/
Accessed 14th June 2015.

23 "Daimler and other manufacturers, including Nissan and Tesla, are planning to introduce fully autonomous vehicles (with no human driver on board) during the early 2020s."
See The first licenced autonomous driving truck in the US, Future Timeline Blog:
http://www.futuretimeline.net/blog/2015/05/7.htm
Accessed 14th June 2015.

24 Autonomous Vehicles Will Replace Taxi Drivers, But That's Just the Beginning, Huffington Post:
http://www.huffingtonpost.com/sam-tracy/autonomous-vehicles-will-_b_7556660.html
Accessed 14th June 2015.

25 See 2022-2062.

26 Rethink Robotics aims to revolutionise manufacturing with humanoid robot, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/09/18.htm
Accessed 14th June 2015.

27 Boeing's new robots outperform human workers, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/06/4.htm
Accessed 14th June 2015.

28 See 2016.

29 A robot to help improve agriculture and wine production, Future Timeline Blog:
http://www.futuretimeline.net/blog/2015/01/30.htm
Accessed 14th June 2015.

30 Affordable robotics in agriculture, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/09/3.htm
Accessed 14th June 2015.

31 Robot cleaner can empty bins and sweep floors, New Scientist:
http://www.newscientist.com/article/mg22630213.200-robot-cleaner-can-empty-bins-and-sweep-floors.html
Accessed 14th June 2015.

32 See 2020.

33 "Amazon Prime Air" will use drones for 30 minute delivery, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/12/2.htm
Accessed 14th June 2015.

34 Hospital robot kills 95% of pathogens in 5 minutes with UV light, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/01/22.htm
Accessed 14th June 2015.

35 Robotic butlers to appear in hotels, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/08/14.htm
Accessed 14th June 2015.

36 Robot check-in: The hotel concierge goes hi-tech, BBC:
http://www.bbc.co.uk/news/business-32931923
Accessed 14th June 2015.

37 World's first robotic kitchen to debut in 2017, Future Timeline Blog:
http://www.futuretimeline.net/blog/2015/04/18.htm
Accessed 14th June 2015.

38 CIROS, the salad-making robot, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/11/3.htm
Accessed 14th June 2015.

39 Autonomous swarm boats to defend U.S. Navy, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/10/6-2.htm
Accessed 14th June 2015.

40 The human rights implications of killer robots, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/05/13.htm
Accessed 14th June 2015.

41 Latest videos of the ATLAS, LS3, and WildCat robots, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/10/4.htm
Accessed 14th June 2015.

42 See 2047.

43 See 2016.

44 OSHbot – a new automated retail assistant, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/10/30-3.htm
Accessed 14th June 2015.

45 Crime-predicting robot to patrol streets from 2015, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/12/11.htm
Accessed 14th June 2015.

46 Microsoft Shows Off Robot Security Guards, PC Magazine:
http://uk.pcmag.com/robotics-automation-products/37736/news/microsoft-shows-off-robot-security-guards
Accessed 14th June 2015.

47 Amazon warehouse robots, YouTube:
https://www.youtube.com/watch?v=quWFjS3Ci7A
Accessed 14th June 2015.

48 It takes human researchers 12 years "to do what this robot can do in a week.", Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/11/13.htm
Accessed 14th June 2015.

49 Solar power prices to continue falling through 2025, experts say, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/12/14.htm
Accessed 14th June 2015.

50 Lowering the cost of solar installation with robots and cleaning technology, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/10/16-2.htm
Accessed 14th June 2015.

51 Meet Shanice, the new holographic receptionist, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/08/21.htm
Accessed 14th June 2015.

52 Holograms to replace people at New York airports, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/05/28.htm
Accessed 14th June 2015.

53 See 2014.

54 See 2029.

55 Automation arrives at restaurants (but don't blame rising minimum wages), Computer World:
http://www.computerworld.com/article/2837810/automation-arrives-at-restaurants-but-dont-blame-rising-minimum-wages.html
Accessed 14th June 2015.

56 Burger-making machine could replace human workers, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/12/1-3.htm

Accessed 14th June 2015.

57 Rise of robot reporters: when software writes the news, New Scientist:
http://www.newscientist.com/article/dn25273-rise-of-robot-reporters-when-software-writes-the-news.html
Accessed 14th June 2015.

58 IBM forms Watson Group to meet growing demand for cognitive innovations, Future Timeline Blog:
http://www.futuretimeline.net/blog/2014/01/9-2.htm
Accessed 14th June 2015.

59 See 2019-2024.

60 See 2039.

61 See 2024.

62 World Development Indicators, World Bank:
http://data.worldbank.org/data-catalog/world-development-indicators
Accessed 14th June 2015.

63 The Future of Employment: How Susceptible are jobs to computerisation?, Oxford Martin Programme on the Impacts of Future Technology:
http://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf
Accessed 14th June 2015.

64 History of basic income, Basic Income Earth Network (BIEN):
http://www.basicincome.org/basic-income/history/
Accessed 14th June 2015.

65 After Robots Take Our Jobs, This Is What the Economy Will Look Like, Tech Mic:
http://mic.com/articles/119896/after-robots-take-our-jobs-basic-income-is-the-best-solution

Accessed 14th June 2015.

66 See 2042.

67 SWITZERLAND: 'National Campaign for Unconditional Basic Income' launched, Basic Income Earth Network (BIEN):
http://www.basicincome.org/news/2015/06/switzerland-national-campaign-for-unconditional-basic-income-launched/
Accessed 14th June 2015.

68 The Basic Income Grant Experiment in Namibia, Crooked Timber:
http://crookedtimber.org/2009/06/02/the-basic-income-grant-experiment-in-namibia/
Accessed 14th June 2015.

69 Basic Income: A Transformative Policy for India, By Sarath Davala, Guy Standing, Renana Jhabvala, Soumya Kapoor Mehta:
http://www.booktopia.com.au/basic-income-sarath-davala/prod9781472583109.html
Accessed 14th June 2015.

70 Nearly half of US jobs could be at risk of computerisation within 20 years, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/09/19.htm
Accessed 14th June 2015.

71 Peter Diamandis on technology: "I'm a libertarian-capitalist at heart, but we are heading towards a future of socialism."
See Peter Diamandis talks about "Robots Will Steal Your Job, But That's OK", YouTube:
https://www.youtube.com/watch?v=sXdA1lP7DKY
Accessed 14th June 2015.

72 "The endgame, where we're going as a species if we don't screw up badly and destroy ourselves or burn out all our resources before we get there, is some kind of post-scarcity society."
See America Has Hit "Peak Jobs", TechCrunch:
http://techcrunch.com/2013/01/26/america-has-hit-peak-jobs/
Accessed 14th June 2015.

73 "75 percent of American workers unemployed by 2089."
See: Imagining a future when machines have all the jobs, PhysOrg:
http://phys.org/news/2013-01-future-machines-jobs.html
Accessed 14th June 2015.

74 See 2200.

75 The Reactors That Will Revolutionize Nuclear Energy, The Wall Street Journal:
http://blogs.wsj.com/experts/2015/04/29/the-reactors-that-will-revolutionize-nuclear-energy/
Accessed 10th July 2015.

76 Big plans for small nuclear reactors, Control Engineering:
http://www.controleng.com/single-article/big-plans-for-small-nuclear-reactors/41e38a76468a82cea49909aacaafd31c.html
Accessed 10th July 2015.

77 US Anticipates Small Modular Nuclear Reactors in Next Decade, Nuclear Power Daily:
http://www.nuclearpowerdaily.com/reports/US_Anticipates_Small_Modular_Nuclear_Reactors_in_Next_Decade_999.html
Accessed 10th July 2015.

78 Small and Medium Sized Reactors (SMRs) Development, Assessment and Deployment, IAEA:
https://www.iaea.org/NuclearPower/SMR/
Accessed 10th July 2015.

79 Small Modular Reactors (SMR) Feasibility Study, National Nuclear Laboratory:
http://www.nnl.co.uk/media/1627/smr-feasibility-study-december-2014.pdf
Accessed 10th July 2015.

80 See 2022.

81 See 2017.

82 "If everything goes according to plan, China will send a man to the moon by 2025 according to Ye Peijin, the commander in chief of the Chang'e (lunar landing) programme."
See China to build its own space station, The Telegraph:
http://www.telegraph.co.uk/news/worldnews/asia/china/8475779/China-to-build-its-own-space-station.html
Accessed 31st May 2013.

83 "China will be able to land two to three astronauts on the moon by 2025, with the South Pole the most likely landing site, authorities of the Chinese lunar exploration program said."
See Chinese astronauts could land on moon by 2025, China.org.cn:
http://www.china.org.cn/china/2010-11/08/content_21295188.htm
Accessed 31st May 2013.

84 See 2018.

85 Russia develops revolutionary new rocket engine, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/05/9-2.htm
Accessed 31st May 2013.

86 Russia outlines its rocket-development strategy, Russian Space Web:
http://www.russianspaceweb.com/rockets_launchers_2010s.html
Accessed 31st May 2013.

87 See 2017.

88 See 2019.

89 See 2033.

90 NASA could join private customers for a permanant inflatable moonbase in the 2020s and become a tenant of a Bigelow spacestation after the International Space Station, Next Big Future:
http://nextbigfuture.com/2013/05/nasa-could-join-private-customers-for.html
Accessed 31st May 2013.

91 From Space Station to Moon Base – Bigelow expands on inflatable ambitions, NASA Space Flight:
http://www.nasaspaceflight.com/2013/05/space-station-moon-base-bigelows-expands-inflatable-ambitions/
Accessed 31st May 2013.

92 Space Launch System: Proposed missions and schedule, Wikipedia:
http://en.wikipedia.org/wiki/Space_Launch_System#Proposed_missions_and_schedule
Accessed 31st May 2013.

93 See 2021-2025.

94 Aurora programme, Wikipedia:
http://en.wikipedia.org/wiki/Aurora_programme
Accessed 31st May 2013.

95 Advanced Technology Large-Aperture Space Telescope, Space Telescope Science Institute:
http://www.stsci.edu/institute/atlast
Accessed 28th April 2013.

96 Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade, NASA:
http://exep.jpl.nasa.gov/files/exep/ATLAST_NASA_ASMCS_Public_Report.pdf
Accessed 28th April 2013.

97 See 2055.

98 Aubrey de Grey – Reddit AMA Video Responses, SENS Foundation:
http://www.youtube.com/watch?v=-tsI_28O3Ws
Accessed 30th June 2012.

99 For a somewhat unscientific (but nevertheless interesting) perspective on this, see The Doomsday Curve:
http://lifeboat.com/song/
Accessed 4th September 2010.

100 "... we probably won't start hitting the battlefield until at least the 2025-2030 timeframe."
See Hypersonic Weapons Could Hit Battlefield by 2025, Space.com:
http://www.space.com/21089-hypersonic-weapons-air-force.html
Accessed 22nd May 2013.

101 Commercial hypersonic scramjet flight would likely come soon after the technology achieves military use, he added. "You look historically, after things are used for military applications, there's a couple of years and it usually then works its way into commercial application," Vogel said. But in this case, he added, commercial and military use "may happen about the same time, because the timeframes have been shrinking over the course of many years."
See Hypersonic Weapons Could Hit Battlefield by 2025, Space.com:
http://www.space.com/21089-hypersonic-weapons-air-force.html
Accessed 22nd May 2013.

102 See 2033.

103 Hedgehogs may become extinct within 15 years, The Telegraph:
http://www.telegraph.co.uk/news/uknews/8696170/Hedgehogs-may-become-extinct-within-15-years.html
Accessed 12th December 2011.

104 Red squirrels and hedgehogs 'may become extinct in 20 years', The Metro:
http://www.metro.co.uk/home/872160-red-squirrels-and-hedgehogs-may-become-extinct-in-20-years
Accessed 12th December 2011.

105 Turtle doves and partridges among wild birds in steep decline in Britain, The Guardian:
http://www.guardian.co.uk/environment/2011/nov/30/turtle-doves-wild-birds-britain
Accessed 12th December 2011.

106 Three-quarters of UK butterfly species in decline, The Guardian:
http://www.guardian.co.uk/environment/2011/dec/07/butterfly-species-decline?CMP=twt_gu
Accessed 12th December 2011.

107 Megafauna, Wikipedia:
http://en.wikipedia.org/wiki/Megafauna#Gallery
Accessed 7th May 2012.

108 WWF Factsheet: Black Rhinoceros, WWF:
panda.org/downloads/species/ecop13blackrhinofactsheet.pdf
Accessed 7th May 2012.

109 Slaughter of rhinos at record high: Poaching could lead to extinction by 2025, The Independent:
http://www.independent.co.uk/environment/nature/slaughter-of-rhinos-at-record-high-7687511.html
Accessed 7th May 2012.

110 The Singularity is Near, by Ray Kurzweil (2005)
http://www.amazon.com/Singularity-Near-Humans-Transcend-Biology/dp/0143037889/ref=sr_1_1?ie=UTF8&s=books&qid=1254172463&sr=1-1
Accessed 7th Dec 2008.

111 Scientists to build 'human brain': Supercomputer will simulate the entire mind and will help fight against brain diseases, The Daily Mail:
http://www.dailymail.co.uk/sciencetech/article-2130124/
Accessed 16th April 2012.

112 See 2015.

113 Artificial jaw made using 3D printer, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/02/12.htm
Accessed 10th August 2013.

114 Baby's life saved by 3-D printed device that restored his breathing, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/05/23-2.htm
Accessed 10th August 2013.

115 3D printing helps replace injured patient's skull, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/03/9-3.htm
Accessed 10th August 2013.

116 Research and Markets: 3D Printing 2013-2025: Technologies, Markets, Players, Yahoo! Finance:
http://finance.yahoo.com/news/research-markets-3d-printing-2013-092900991.html
Accessed 10th August 2013.

117 3D-printed exoskeleton helps young girl use her arms, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/08/5.htm
Accessed 10th August 2013.

118 Biomanufacturing laboratory: printing organs, Future Timeline Blog:
http://www.futuretimeline.net/blog/2013/02/23.htm
Accessed 10th August 2013.

119 Organic 3D Printing, The Shapeways Blog: 3D Printing News & Innovation:
http://www.shapeways.com/blog/archives/1662-organic-3d-printing.html
Accessed 10th August 2013.

120 "By 2025, it is feasible that we will be able to fabricate complete functional organs, tailored for an individual patient."
See Scientists 'grow' new cartilage with help of 3D printing technology, University of Wollongong:
http://media.uow.edu.au/news/UOW155364.html
Accessed 10th August 2013.

121 "Sometime next decade, replacement human organs may be bioprinted to patient specification using technology derrived from today's inkjet printers."
Bioprinting
, ExplainingTheFuture.com:
http://www.explainingthefuture.com/bioprinting.html
Accessed 10th August 2013.

122 "Beyond 2025, one category of 3D printing — bioprinting of living organs — has long-term potential to save or extend many lives."
Disruptive technologies: Advances that will transform life, business, and the global economy
, McKinsey Global Institute:
http://www.mckinsey.com/insights/business_technology/disruptive_technologies
Accessed 10th August 2013.

123 China to build 10 New Yorks by 2025, International Construction Review:
http://www.ciobinternational.org/news/view/1393.
Accessed 9th Sept 2008.

124 Timeline of the Chinese Nuclear Industry, 1970 to 2020, Energy Information Administration:
http://www.eia.doe.gov/cneaf/nuclear/page/nuc_reactors/china/timeline.html.
Accessed 9th Sept 2008.

125 What If the World's Soil Runs Out?, TIME:
http://world.time.com/2012/12/14/what-if-the-worlds-soil-runs-out/
Accessed 6th February 2013.

126 See 2030.

127 World's first commercial vertical farm opens in Singapore, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/10/26.htm
Accessed 6th February 2013.

128 "It is estimated that world population will increase to 8 billion people by 2025, and hopefully vertical farming will have full realization by then."
Vertical Farming- Providing Alternative Resources for Food Production
, Bright Hub:
http://www.brighthub.com/environment/science-environmental/articles/39036.aspx
Accessed 6th February 2013.

129 "Imagine a cluster of 30-story towers on Governors Island or in Hudson Yards producing fruit, vegetables, and grains while also generating clean energy and purifying wastewater. Roughly 150 such buildings, Despommier estimates, could feed the entire city of New York for a year."
Skyfarming
, New York Magazine:
http://nymag.com/news/features/30020/
Accessed 6th February 2013.

130 Major breakthrough in deciphering bread wheat's genetic code, Future Timeline Blog:
http://www.futuretimeline.net/blog/2012/12/1-2.htm
Accessed 6th February 2013.

131 See 2016.

132 Cities to Face Sharply Rising Costs for Garbage Treatment, The World Bank:
http://web.worldbank.org/WBSITE/EXTERNAL/NEWS/0,,contentMDK:23212575~pagePK:34370~piPK:34424~theSitePK:4607,00.html
Accessed 30th June 2012.

133 Update: Study sees global trash avalanche by 2025, Waste & Recycling News:
http://www.wasterecyclingnews.com/article/20120618/NEWS01/120619932/update-study-sees-global-trash-avalanche-by-2025
Accessed 30th June 2012.

134 Hazardous E-Waste Surging in Developing Countries, Science Daily:
http://www.sciencedaily.com/releases/2010/02/100222081911.htm
Accessed 30th June 2012.

135 See 2600 AD.

136 Waste and the world bank, Waste Management World:
http://www.waste-management-world.com/index/display/article-display/5010690251/
Accessed 30th June 2012.

137 The Alaskan village set to disappear under water in a decade, BBC:
http://www.bbc.co.uk/news/magazine-23346370
Accessed 30th July 2013.

138 Offshore Wind Energy, renewableuk:
http://www.renewableuk.com/en/renewable-energy/wind-energy/offshore-wind/index.cfm
Accessed 20th June 2014.

139 Dogger Bank, Forewind:
http://www.forewind.co.uk/dogger-bank/overview.html
Accessed 20th June 2014.

140 Zone Overview, Forewind:
http://www.forewind.co.uk/dogger-bank/zone-overview.html
Accessed 20th June 2014.

141 Planning Consent Granted for East Anglia ONE Offshore Windfarm, East Anglia Offshore Windfarm Zone:
http://www.eastangliawind.com/news-view.aspx?newsID=40
Accessed 20th June 2014.

142 East Anglia Zone Could Become Center of OW Development, OffshoreWind.biz:
http://www.offshorewind.biz/2014/03/12/east-anglia-zone-could-become-center-of-ow-development/
Accessed 20th June 2014.

143 See 2050.

144 Extrapolated from current trends in UK offshore wind capacity.

145 Wind power in the United Kingdom, Wikipedia:
https://en.wikipedia.org/wiki/Wind_power_in_the_United_Kingdom
Accessed 20th June 2014.

146 See 2070.

147 Masdar City to be Complete by 2025?, CleanTechnica:
http://cleantechnica.com/2012/02/07/masdar-city-to-be-complete-by-2025/
Accessed 28th October 2012.

148 Masdar City official website:
http://www.masdarcity.ae/en/
Accessed 28th October 2012.

149 Masdar – the low-carbon city, BBC:
http://news.bbc.co.uk/1/hi/programmes/fast_track/9695251.stm
Accessed 28th October 2012.

150 Vertical Farming in Masdar City? AeroFarms' Soil-less Solution, Green Prophet:
http://www.greenprophet.com/2010/05/aerofarms-vertical-farming/
Accessed 28th October 2012.

151 See 2060-2100.

152 Voyager – Spacecraft Lifetime, NASA:
http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html
Accessed 3rd August 2012.

153 Voyager Golden Record, goldenrecord.org:
http://goldenrecord.org
Accessed 4th October 2009.

154 Trains in Spain signal the future, BBC.co.uk:
http://news.bbc.co.uk/1/hi/world/europe/8268003.stm
Accessed 26th Sept 2009.

155 High Speed 2, Wikipedia:
http://en.wikipedia.org/wiki/High_Speed_2
Accessed 7th January 2012.

156 Japanese Maglev, 500km/h, YouTube:
http://www.youtube.com/watch?v=NQyj-3C99bA
Accessed 26th Sept 2009.

157 High-Speed Rail, Federal Railroad Administration:
http://www.fra.dot.gov/us/content/31
Accessed 26th Sept 2009.

158 NextGen Implementation Plan, 2012, Federal Aviation Administration:
http://www.faa.gov/nextgen/implementation/plan/
Accessed 30th June 2012.

159 A First Look at Flight in 2025, NASA:
http://www.nasa.gov/topics/aeronautics/features/flight_2025.html
Accessed 30th June 2012.

160 Federal Vehicle Standards, Center for Climate and Energy Solutions:
http://www.c2es.org/federal/executive/vehicle-standards
Accessed 5th March 2013.

161 Futuristic Navy railgun with 220-mile range closer to reality, CNET:
http://news.cnet.com/8301-13772_3-57367745-52/futuristic-navy-railgun-with-220-mile-range-closer-to-reality/?tag=mncol;txt
Accessed 11th April 2012.

162 Video: Navy Fires Off Its New Weaponized Railgun, Wired:
http://www.wired.com/dangerroom/2012/02/railgun-real-gun/
Accessed 11th April 2012.

163 Railgun, Wikipedia:
http://en.wikipedia.org/wiki/Railgun
Accessed 11th April 2012.

 

 
     
 
 
 
 

 


future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed