future timeline technology singularity humanity
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Blog » Space


14th July 2017

Luxembourg becomes the first European country to pass space mining law

Luxembourg yesterday passed a draft law on the exploration and use of space resources. The Grand Duchy is thus the first European country to offer a legal framework ensuring that private operators can be confident about their rights on resources they extract in space.

The new law – approved by a majority of 55 votes against two – will come into force on 1st August 2017. Its first article provides that space resources are capable of being owned. It also establishes the procedures for authorising and supervising space exploration missions.

This legal and regulatory framework is a key part of the SpaceResources.lu initiative, whose goal is to support the long-term economic development of new, innovative activities in the space industry. Within this strategy, Luxembourg has already begun to support research and development projects of leading players in the space mining industry that have set up their European operations in Luxembourg. For example, US firms Deep Space Industries and Planetary Resources both have subsidiaries there now; the latter finalised a 25 million euro agreement last year to accelerate the company's technical advancements, with the aim of launching a first commercial asteroid mission by 2020.


asteroid mining future timeline


It is hoped that the SpaceResources.lu initiative can build on the experience Luxembourg has gained in sectors that are closely related to space mining, and in particular on its strong track record in the satellite sector. In 1985, a public-private partnership effort launched Société Européenne des Satellites, today known as the largest global satellite operator SES with its headquarters in Luxembourg. This now controls more than 50 satellites.

Deputy Prime Minister, Étienne Schneider, said: "Luxembourg is the first adopter in Europe of a legal and regulatory framework recognising that space resources are capable of being owned by private companies. The Grand Duchy thus reinforces its position as a European hub for the exploration and use of space resources. The legal framework is part of the expertise ecosystem and the business-friendly, innovation-nurturing environment that Luxembourg is offering to space industry companies. By adopting almost unanimously the respective draft law, the Luxembourg Parliament confirmed the strong political cross-party and national commitment to the SpaceResources.lu initiative."

“Luxembourg continues to be a strong partner and a global leader,” said Chris Lewicki, Planetary Resources CEO. “They are genuinely forward thinking, have a proven record in the satellite industry, and are making their mark on the space mining industry. The passage of this law is further proof of that.”

Alongside steps taken on the national level within the SpaceResources.lu initiative, Luxembourg continues to promote international cooperation in order to make progress on a future governance scheme and a global regulatory framework for space mining. In line with this, the Grand Duchy recently signed a joint statement with the European Space Agency (ESA) on future activities concerning missions to asteroids, related technologies and space resources exploration and utilisation. Luxembourg and the ESA agreed on the opportunity to further study technical and scientific aspects of space resources.

In April, a report by Goldman Sachs revealed that asteroid mining is “more realistic than perceived” – thanks to the falling costs of access to space – and is likely to bring enormous rewards to companies able to develop the necessary technologies for extraction. A single 500-metre-wide asteroid could contain nearly 175 times the global output of platinum.




• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube


  speech bubble Comments »



13th July 2017

Smallest-ever star discovered

The discovery of the smallest star able to sustain nuclear fusion has been announced; its diameter is just slightly larger than that of Saturn.


smallest star future timeline
Images and text credit: University of Cambridge, Wikimedia Creative Commons license, Attribution 4.0 International (CC BY 4.0)


The smallest star yet measured has been discovered by a team of astronomers led by the University of Cambridge. With a diameter just slightly larger than that of Saturn, the gravitational pull at its stellar surface is about 300 times stronger than what humans feel on Earth. With just enough mass to enable the fusion of hydrogen nuclei into helium, it is likely as small as stars can possibly become. If it were any smaller, the pressure at its centre would no longer be sufficient to enable this process to take place. Hydrogen fusion is also what powers the Sun, and scientists are attempting to replicate it as a powerful energy source here on Earth.

Very small and dim stars like this one are also the best possible candidates for detecting Earth-sized planets with liquid water on their surfaces, such as TRAPPIST-1, an ultracool dwarf surrounded by seven temperate Earth-sized worlds.

The newly-found star – EBLM J0555-57Ab – is about 600 light years away in the constellation Pictor, in the direction of the Large Magellanic Cloud. It is part of a binary system, and was identified as it passed in front of its much larger companion, a method normally used to detect planets, not stars.


smallest star binary system
EBLM J0555-57 binary system, imaged by ESO’s La Silla Observatory. Credit: Alexander von Boetticher et al.


“Our discovery reveals how small stars can be,” said Alexander Boetticher, the lead author of the study, and a Master’s student at Cambridge’s Cavendish Laboratory and Institute of Astronomy. “Had this star formed with only a slightly lower mass, the fusion reaction of hydrogen in its core could not be sustained, and the star would instead have transformed into a brown dwarf.”

EBLM J0555-57Ab was identified using data from the Wide Angle Search for Planets (WASP), an experiment run by the Universities of Keele, Warwick, Leicester and St Andrews. It was found to circle its primary star companion with an orbital period of just 7.8 days, and has a mass of 85 Jupiters.

“This star is smaller, and likely colder than many of the gas giant exoplanets that have so far been identified,” said Boetticher. “While a fascinating feature of stellar physics, it is often harder to measure the size of such dim low-mass stars than for many of the larger planets. Thankfully, we can find these small stars with planet-hunting equipment, when they orbit a larger host star in a binary system. It might sound incredible, but finding a star can at times be harder than finding a planet.”

Despite being the most numerous stars in the Universe, stars with sizes and masses less than 20% that of our Sun are poorly understood, since they are difficult to detect. The EBLM project, which identified the star in this study, aims to plug that gap in knowledge: “Thanks to the EBLM project, we will achieve a far greater understanding of the planets orbiting the most common stars that exist; planets like those orbiting TRAPPIST-1,” said co-author Prof. Didier Queloz of Cambridge's Cavendish Laboratory. The team's work is published in the journal Astronomy & Astrophysics.


• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube


  speech bubble Comments »



22nd June 2017

Gravitational wave observatory to launch in 2034

The European Space Agency (ESA) has confirmed the Laser Interferometer Space Antenna (LISA) as the third large-class mission in its future science programme, with launch planned for 2034.


laser interferometer space antenna lisa 2034 future timeline


A trio of satellites to detect gravitational waves has been selected as the third large-class (L3) mission in ESA's Science programme. In terms of its area and dimensions covered, the Laser Interferometer Space Antenna (LISA) will be the largest man-made structure ever put into space – with each "side" of its triangle stretching across millions of kilometres – forming a giant observatory to probe the Dark Side of the Universe.

In 2013, the "gravitational universe" was chosen as the theme for a future ESA mission. This would be designed to search for ripples in the fabric of space-time created by celestial objects with extremely strong gravity, such as pairs of merging black holes.

Gravitational waves were predicted a century ago by Albert Einstein's general theory of relativity, but remained elusive until very recently, when the first direct detection was made by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO). That signal, announced in February 2016, was triggered by the merging of two black holes some 1.3 billion light-years away.



Since then, two more events have been detected and a follow-up study, LISA Pathfinder, has demonstrated that observations can be made in space – not just with ground-based instruments. This precursor mission will conclude on 30th June, after sixteen months of science operations, which have tested key technologies needed for the more advanced LISA in the 2030s.

Space-based operations will provide major advantages:

• no need to create an artificial vacuum, since the vacuum of space is free and better than anything that can be simulated in a lab;
• no interference from seismic noise, such as earthquakes or plate tectonics, passing vehicles and other human activity;
• no limitations in size for the observatory arms, which would otherwise be restricted by the curvature of the Earth.

To detect and measure gravitational waves from distant astronomical sources, a phenomenal level of sensitivity is required. Using laser interferometry over its trio of 2.5 million kilometre arms, LISA will track relative displacements with a resolution of 20 picometres – 1/50 billionth of a metre – less than the width of a helium atom. It will look for ripples in space-time with periods ranging from a few minutes to a few hours. Several thousand objects are expected to be resolved within the first year of operation.

In addition to studying black holes and compact binaries, LISA will probe the expansion of the universe and the gravitational wave background created during the early universe. It will also look for currently unknown (and unmodelled) sources of gravitational waves. History in astrophysics has shown that whenever a new frequency range/medium of detection is available, new and unexpected sources show up. This may, for example, include kinks and cusps in cosmic strings.

Following its selection, LISA will now enter a more detailed phase of design and costing, before construction begins. Its launch is expected during 2034 and the mission lifetime is four years – but the spacecraft will have enough power and orbital stability to potentially last until 2044.




• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube


  speech bubble Comments »



21st June 2017

Entangled photons sent between suborbital space and Earth

Chinese scientists report the transmission of entangled photons between suborbital space and Earth, using the satellite Micius. More satellites could follow in the near future, with plans for a European–Asian quantum-encrypted network by 2020, and a global network by 2030.



In a landmark study, Chinese scientists report the successful transmission of entangled photons between suborbital space and Earth. Furthermore, whereas the previous record for entanglement distance was 100 km (62 miles), here, transmission over more than 1,200 km (746 miles) was achieved.

The distribution of quantum entanglement, especially across vast distances, holds major implications for quantum teleportation and encryption networks. Yet, efforts to entangle quantum particles – essentially "linking" them together over long distances – have been limited to 100 km or less, mainly because the entanglement is lost as they are transmitted along optical fibres, or through open space on land.

One way to overcome this issue is to break the line of transmission into smaller segments and repeatedly swap, purify and store quantum information along the optical fibre. Another approach to achieving global quantum networks is by making use of lasers and satellite technologies. Using a Chinese satellite called Micius, launched last year and equipped with specialised quantum tools, Juan Yin et al. demonstrated the latter feat. The Micius satellite was used to communicate with three ground stations across China, each up to 1,200 km apart.

The separation between the orbiting satellite and these ground stations varied from 500 to 2,000 km. A laser beam on the satellite was subjected to a beam splitter, which gave the beam two distinct polarised states. One of the spilt beams was used for transmission of entangled photons, while the other was used for photon receipt. In this way, entangled photons were received at the separate ground stations.

"It's a huge, major achievement," Thomas Jennewein, physicist at the University of Waterloo in Canada, told Science. "They started with this bold idea and managed to do it."

"The Chinese experiment is quite a remarkable technological achievement," said Artur Ekert, a professor of quantum physics at the University of Oxford, in an interview with Live Science. "When I proposed the entangled-based quantum key distribution back in 1991 when I was a student in Oxford, I did not expect it to be elevated to such heights."

One of the many challenges faced by the team was keeping the beams of photons focused precisely on the ground stations as the satellite hurtled through space at nearly 8 kilometres per second.

Quantum encryption, if successfully developed, could revolutionise communications. Information sent via this method would, in theory, be absolutely secure and practically impossible for hackers to intercept. If two people shared an encrypted quantum message, a third person would be unable to access it without changing the information in an unpredictable way. Further satellite tests are planned by China in the near future, with potential for a European–Asian quantum-encrypted network by 2020, and a global network by 2030.


• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube


  speech bubble Comments »


« Previous  



AI & Robotics Biology & Medicine Business & Politics Computers & the Internet
Energy & the Environment Home & Leisure Military & War Nanotechnology
Physics Society & Demographics Space Transport & Infrastructure






future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Privacy Policy