future timeline technology singularity humanity
 
   
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed
 
     
     
 
       
 
 
 

Blog » Energy & the Environment

 
     
 

12th August 2017

U.S. Army lab discovers new energy source

Scientists and engineers at the U.S. Army Research Laboratory (ARL) in Maryland have demonstrated a new nanomaterial powder that creates large amounts of energy by simply mixing it with water.

 

nanotechnology powder energy
Credit: U.S. Army Research Laboratory

 

The substance is described as a nano-galvanic aluminium-based powder. It creates a bubbling reaction that splits apart water – two molecules of hydrogen and one of oxygen.

"The hydrogen that is given off can be used as a fuel in a fuel cell," said Scott Grendahl, a materials engineer and team leader. "What we discovered is a mechanism for a rapid and spontaneous hydrolysis of water."

It has already been known for a long time that hydrogen can be produced by adding a catalyst to aluminium. However, this normally takes time and requires elevated temperatures, added electricity and/or toxic chemicals. By contrast, the nanomaterial powder seen here does not require a catalyst and is very fast. The team calculates that one kilogram of the powder can produce 220 kilowatts of energy in just three minutes, which is doubled if you consider the amount of heat energy produced by the exothermic reaction.

"That's a lot of power to run any electrical equipment," said Dr. Anit Giri, a physicist for the Weapons and Materials Research Directorate. "These rates are the fastest known without using catalysts such as an acid, base or elevated temperatures."

As seen in the video, the team demonstrated a small radio-controlled tank powered by the powder and water reaction. They believe their discovery is dramatic in terms of future potential. It could be 3-D printed and incorporated into future air or ground robots. These self-cannibalising machines would feed off their own structures, then self-destruct after mission completion. It could also help future soldiers to recharge mobile devices for recon teams.

"There are other researchers who have been searching their whole lives and their optimised product takes many hours to achieve, say 50% efficiency," Grendahl said. "Ours does it to 100% efficiency in less than three minutes."

"The important aspect of the approach is that it lets you make very compact systems," notes Anthony Kucernak from Imperial College London, who was not involved in this particular study, but is an expert on fuel cell technology. "That would be very useful for systems which need to be very light or operate for long periods on hydrogen, where the use of hydrogen stored in a cylinder is prohibitive."

 

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

11th August 2017

Smart windows could save 20% in energy costs

Researchers in the U.S. have created "smart windows" that rapidly change opacity, depending on how sunny it is. This new technology could cut utility costs.

 

 

Engineers at Stanford University have created dynamically changing windows that can switch from transparent to opaque in only a minute – and back again in just 20 seconds – a major improvement over dimming windows currently being installed to reduce cooling costs in some buildings.

The newly designed "smart" windows consist of conductive glass plates outlined with metal ions that spread out over the surface, blocking light in response to an electrical current. The results are described in the 9th August edition of the journal Joule.

"We're excited because dynamic window technology has the potential to optimise the lighting in rooms or vehicles, and save about 20 percent in heating and cooling costs," said Michael McGehee, a professor of materials science and engineering at Stanford and senior author of the study. "It could even change the way people wear sunglasses."

 

smart windows technology costs
Credit: Barile et al./Joule 2017

 

The researchers have filed a patent for their new technology and have entered into discussions with glass manufacturers and other potential partners. However, more research is needed to make the surface area of the windows large enough for commercial applications. The prototypes used in the study are only about 4 square inches (25 square centimetres) in size. The team also wants to reduce manufacturing costs to be competitive with dynamic windows already on the market.

"This is an important area that is barely being investigated at universities," McGehee said. "There's a lot of opportunity to keep us motivated."

Commercially available smart windows are made of materials, such as tungsten oxide, that change colour when charged with electricity. But these tend to be expensive, have a blue tint, can take more than 20 minutes to dim, and become less opaque over their lifetime. The Stanford prototype blocks light through the movement of a copper solution over a sheet of indium tin oxide, modified with platinum nanoparticles.

 

smart window nanotechnology
  Credit: Barile et al./Joule 2017

 

When transparent, the window is clear and lets roughly 80 percent of incoming natural light pass through. When dark, the transmission of light drops below five percent. To test its durability, the researchers switched the windows on and off more than 5,000 times and saw no degradation in the transmission of light.

"We've had a lot of moments where we thought, how is it even possible we've made something that works so well so quickly?" McGehee said. "We didn't tweak what was out there. We came up with a completely different solution."

Perhaps in some future decade, with further advances in nanotechnology, smart windows could be developed that respond to sunlight in real time and instantly change colour – while being affordable enough to feature as standard in every building and vehicle.

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

1st August 2017

New efficiency record for perovskite solar cells

Researchers in South Korea have announced a new world record efficiency of 22.1% for perovskite solar cells.

 

new solar record 2017
Credit: Ulsan National Institute of Science and Technology (UNIST)

 

Each year, the efficiency of solar power continues to inch upward, as new technological advances are made. Now, researchers at the Ulsan National Institute of Science and Technology (UNIST), South Korea, have announced the latest breakthrough in perovskite solar cells, which is published in the journal Science.

There are many different types of solar power. A major advantage of perovskite solar cells (PSCs) is that it is possible to make them with cheaper and more commonly available metals and chemicals, as opposed to the expensive raw materials used in other silicon substitutes. They also have more flexibility in terms of colour adjustment, enabling them to be fabricated in more aesthetically-pleasing ways on rooftops, for example. They can even be processed as additional layers on top of silicon panels, to improve the appearance of the more advanced and expensive panels.

The formation of a dense and uniform thin layer on the substrates is crucial for high-performance PSCs. The concentration of defect states, which reduce a cell's performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible.

The research team at UNIST reports that careful control of the growth conditions of perovskite layers with management of deficient halide anions is essential for realising high-efficiency thin-film PSCs based on lead-halide-perovskite absorbers. In their study, they demonstrated the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreasing the concentration of deep-level defects.

"This study can improve the current record efficiency of perovskite solar cells from 20.1% to 22.1%," says Professor Sang-Il Seok, from the School of Energy and Chemical Engineering at UNIST. "This will accelerate the commercialisation of low-cost, high-performance perovskite solar cells."

The energy conversion efficiency of 22.1% has now been officially certified by the National Renewable Energy Laboratory (NREL) in the USA.

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

26th July 2017

The last surviving species on Earth may be tardigrades

Astrophysicists report that tardigrade micro-animals may be one of the most resilient lifeforms on Earth, able to withstand global mass extinctions due to astrophysical events, such as supernovae, gamma-ray bursts, large asteroid impacts, and passing-by stars.

 

tardigrade

 

The world's most indestructible species, the tardigrade – an eight-legged micro-animal, also known as the water bear – will survive until the Sun dies, according to a new collaboration between Harvard and Oxford University.

Although much attention has been given to the potential impact of astrophysical events on human life, very little has been published about what it would take to kill the tardigrade and wipe out life on our planet. The new research implies that life will persist for as long as the Sun continues to shine. It also reveals that once life emerges, it is surprisingly resilient and difficult to destroy, boosting the odds of life on other planets.

The study, published in Scientific Reports, shows that the tiny creatures will survive the risk of extinction from all astrophysical catastrophes, and be around for billions of years – far longer than the human race.

Tardigrades are the toughest, most resilient animals on Earth – able to survive for up to 30 years without food or water, and endure temperature extremes of up to 150 degrees Celsius, the deep sea and even the frozen vacuum of space. The water-dwelling micro animal is only 0.5mm (0.02 inches) in size, but can live for up to 60 years. Researchers from the Universities of Oxford and Harvard concluded that they could most likely survive all astrophysical calamities.

Three potential events were considered as part of their research:

 

Asteroids

There are only a dozen known asteroids and dwarf planets with enough mass to boil the oceans (2x10^18 kg), these include Vesta (2x10^20 kg) and Pluto (10^22 kg). However, none of these objects will intersect the Earth's orbit and pose a threat to tardigrades.

 

Supernova

In order to boil the oceans, an exploding star would need to be 0.14 light years away. The closest star to the Sun is 4.2 light years away and the probability of a massive star exploding close enough to Earth to kill all lifeforms on it, within the Sun's lifetime, is negligible.

 

Gamma-ray bursts

Gamma-ray bursts are brighter and rarer than supernovae. Much like supernovas, gamma-ray bursts are too far away from Earth to be considered a viable threat. To boil the world's oceans, the burst would need to be within 40 light years, and the likelihood of a burst occurring so close is again, minor.

 

gamma ray burst future timeline
Gamma-ray burst. Credit: NASA

 

"Without our technology protecting us, humans are a very sensitive species," said Dr Rafael Alves Batista, Co-author and Post-Doctoral Research Associate in the Department of Physics at Oxford University. "Subtle changes in our environment impact us dramatically. There are many more resilient species on Earth. Life on this planet can continue long after humans are gone. Tardigrades are as close to indestructible as it gets on Earth, but it is possible that there are other resilient species examples elsewhere in the universe. In this context, there is a real case for looking for life on Mars and in other areas of the Solar System in general. If Tardigrades are Earth's most resilient species, who knows what else is out there?"

"A lot of previous work has focused on 'doomsday' scenarios on Earth – astrophysical events like supernovae that could wipe out the human race," explains Dr David Sloan, co-author from the same department at Oxford University. "Our study instead considered the hardiest species – the tardigrade. As we are now entering a stage of astronomy where we have seen exoplanets and are hoping to soon perform spectroscopy, looking for signatures of life, we should try to see just how fragile this hardiest life is. To our surprise we found that although nearby supernovae or large asteroid impacts would be catastrophic for people, tardigrades could be unaffected. Therefore it seems that life, once it gets going, is hard to wipe out entirely. Huge numbers of species, or even entire genera may become extinct, but life as a whole will go on."

In highlighting the resilience of life in general, the research broadens the scope of life beyond Earth, within and beyond the Solar System.

"It is difficult to eliminate all forms of life from a habitable planet," explains Professor Abraham Loeb, co-author and chair of the Astronomy department at Harvard University. "The history of Mars indicates that it once had an atmosphere that could have supported life, albeit under extreme conditions. Organisms with similar tolerances to radiation and temperature as tardigrades could survive long-term below the surface in these conditions. The subsurface oceans that are believed to exist on Europa and Enceladus would have conditions similar to the deep oceans of Earth where tardigrades are found, volcanic vents providing heat in an environment devoid of light. The discovery of extremophiles in such locations would be a significant step forward in bracketing the range of conditions for life to exist on planets around other stars."

 

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

24th July 2017

Carbon sequestration made 500 times faster

Researchers in California have reported how carbon sequestration in the ocean can be made 500 times faster, by simply adding a common enzyme to the process.

 

carbon sequestration 500 times faster
Scanning electron microscope image of calcite. Credit: Adam Subhas/Caltech

 

Scientists at the California Institute of Technology (Caltech) and the University of Southern California (USC) have found a way to accelerate the slow part of the chemical reaction that helps Earth to safely lock away, or sequester, carbon dioxide into the ocean. Simply adding a common enzyme to the mix can make the rate-limiting part of the process go 500 times faster. Their research appears in Proceedings of the National Academy of Sciences.

"While the new paper is about a basic chemical mechanism, the implication is that we might better mimic the natural process that stores carbon dioxide in the ocean," says lead author Adam Subhas, a Caltech graduate student and Resnick Sustainability Fellow.

The team studied calcite – a form of calcium carbonate – dissolving in seawater and measured how fast it occurs at a molecular level. For this, they used isotopic labelling and two methods for measuring isotope ratios in solutions and solids.

"Although a seemingly straightforward problem, the kinetics of the reaction is poorly understood," said Will Berelson, co-author and a Professor of Earth Sciences at USC.

Calcite is a mineral made of calcium, carbon, and oxygen that is more commonly known as the sedimentary precursor to limestone and marble. In the ocean, calcite is a sediment formed from the shells of organisms, like plankton, that have died and sunk to the seafloor. Calcium carbonate is also the material that makes up coral reefs – the exoskeleton of the coral polyp.

With atmospheric carbon dioxide levels having risen past 400 parts per million, ocean surfaces have absorbed more and more of that greenhouse gas. This is part of a natural buffering process – the oceans act as a major reservoir of carbon dioxide, currently holding 50 times as much as the atmosphere.

However, there is a second, slower, buffering process. Carbon dioxide is an acid in seawater, just like in carbonated sodas (which is part of why they dissolve your tooth enamel). Acidified water on the ocean surface will eventually circulate to the deep, where it can react with dead calcium carbonate shells on the seafloor and neutralise the added carbon dioxide. This process takes tens of thousands of years, however, and meanwhile, the ever-more acidic surface waters eat away at coral reefs. But how quickly will the coral dissolve?

 

coral bleaching

 

"We decided to tackle this problem because it's kind of embarrassing, the state of knowledge expressed in the literature," says Jess Adkins, Professor of Geochemistry and Global Environmental Science at Caltech. "We can't tell you how quickly the coral is going to dissolve."

Earlier methods relied on measuring the changing pH of seawater as calcium carbonate dissolved, and inferring dissolution rates from that (as calcium carbonate dissolves, it raises the pH of water, making it less acidic). Subhas and Adkins instead opted to use isotopic labelling.

Carbon atoms exist in two stable forms in nature. About 98.9% is carbon-12, which has six protons and six neutrons. The other 1.1% is carbon-13, containing one extra neutron. Subhas and Adkins engineered a sample of calcite made entirely of the rare carbon-13, and then dissolved it in seawater. By measuring the change in ratio of carbon-12 to carbon-13 in the seawater over time, they were able to quantify the dissolution at a molecular level. Their method proved to be around 200 times more sensitive than comparable techniques for studying the process.

On paper, the reaction is fairly straightforward: water plus carbon dioxide plus calcium carbonate equals dissolved calcium and bicarbonate ions. But in practice it is more complex. "Somehow, calcium carbonate decides to spontaneously slice itself in half," explains Adkins. "But what is the actual chemical path that reaction takes?"

Studying the process in detail with a secondary ion mass spectrometer (which analyses the surface of a solid by bombarding it with a beam of ions) and a cavity ringdown spectrometer (which determines the 13C/12C ratio in solution), the researchers discovered that the slow part of the reaction is the conversion of carbon dioxide and water into carbonic acid.

"This reaction has been overlooked," says Subhas. "The slow step is making and breaking carbon-oxygen bonds. They don't like to break; they're stable forms."

Armed with this knowledge, they added the enzyme carbonic anhydrase – which helps maintain the pH balance of blood in humans and other animals – and were able to speed up the reaction by orders of magnitude.

"This is one of those rare moments in the arc of one's career where you just go, 'I just discovered something no one ever knew,'" says Adkins.

There is a long way to go before this process could be scaled up (perhaps via a system of pipelines, or underwater delivery drones?), but in the future it could play a part in restoring the health of our oceans.

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

9th July 2017

China to build first "forest city" in 2020

The masterplan for an eco-friendly "forest city" in China has been revealed by Italian architecture firm, Stefano Boeri Architetti.

Known as Liuzhou Forest City, the project will be built north of Liuzhou, in a mountainous part of Guangxi Province, in an area that covers 175 hectares along the Liujiang River. The new green city, initially hosting 30,000 people, will feature various residential areas, commercial and recreational spaces, along with two schools and a hospital. It will include electric cars and a connection to Liuzhou through a fast rail line.

Liuzhou Forest City will be self-sufficient in clean energy, utilising geothermal and rooftop solar power. While this may seem impressive enough, an even greater innovation is the widespread use of vegetation covering every building, of all sizes and functions. A total of 40,000 trees (1.3 for every person) and almost a million plants of more than 100 different species will make this a true "forest city".

The diffusion of plants – not only in parks, gardens and along streets, but also over building facades – will greatly improve the air quality, decrease the average air temperature, and create barriers for reducing noise, while improving the biodiversity of living species, generating new habitats for birds, insects and other small animals that inhabit the Liuzhou territory. According to Stefano Boeri Architetti, the city will absorb 57 tons of dust and other pollutants each year, generate 900 tons of oxygen and sequester almost 10,000 tons of CO2 annually. For the residents, being surrounded by so much vegetation may have yet another benefit: studies have repeatedly shown that the presence of trees and plants can significantly improve mental health.

The architects hope that Liuzhou Forest City could serve as a model or template for other cities, both in China and around the world. Given the challenges faced by humanity, perhaps this style of architecture may become necessary, rather than optional, in the not-too-distant future. It would be interesting to see major world cities like New York, London and Paris being transformed into much larger forest cities.

 

Click to enlarge

  china forest city 2020   china forest city 2020   china forest city 2020  
             
  china forest city 2020   china forest city 2020   china forest city 2020  

Images credit: Stefano Boeri Architetti

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

6th July 2017

Volvo Cars to go all-electric

Volvo Cars has announced that every car it launches from 2019 will be either electric or hybrid, marking the historic end of cars that only have an internal combustion engine (ICE) and placing electrification at the core of its future business.

 

volvo future electric cars 2019 2020

 

This announcement represents one of the most significant moves by any car maker to embrace electrification. It underscores how, more than a century after the invention of the internal combustion engine, electrification is paving the way for a new chapter in automotive history.

“This is about the customer,” said Håkan Samuelsson, president and chief executive. “People increasingly demand electrified cars and we want to respond to our customers’ current and future needs. You can now pick and choose whichever electrified Volvo you wish.”

Volvo will introduce a portfolio of electrified cars across its model range, embracing fully electric cars, plug-in hybrids and mild hybrid cars. It will launch five fully electric cars between 2019 and 2021, three of which will be Volvo models and two of which will be high performance electrified cars from its performance car arm, Polestar. Full details of these models will be announced at a later date.

These five cars will be supplemented by a range of petrol and diesel plug-in hybrid and mild hybrid 48-volt options on all models – one of the broadest electrified car offerings of any car maker. This means that there will, in the future, be no Volvo cars without an electric motor, as pure ICE cars are gradually phased out and replaced by ICE cars that are enhanced with electrified options.

“This announcement marks the end of the solely combustion engine-powered car,” said Mr Samuelsson. “Volvo Cars has stated that it plans to have sold a total of one million electrified cars by 2025. When we said it, we meant it. This is how we are going to do it.”

The announcement underlines Volvo’s commitment to minimising its environmental impact and making cities of the future cleaner. Volvo is focused on reducing the carbon emissions of both its products as well as its operations. It aims to have carbon neutral manufacturing operations by 2025.

 

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

5th July 2017

Future pavements could generate electricity from footsteps

Imagine a city where simply walking on pavements and other flat surfaces can produce usable power. One company has demonstrated just such a concept in London's West End.

 

future pavement technology
Credit: PaveGen

 

PaveGen was founded in 2009 by Laurence Kemball-Cook, a graduate in Industrial Technology and Design from Loughborough University. For the last several years, his company has been developing a tile that converts kinetic energy from pedestrian footsteps into electricity, while collecting data about walking traffic patterns. The exact technology is being kept a trade secret, but is said to involve electromagnetic induction by copper coils and magnets.

For its latest project, PaveGen has worked alongside other tech companies to help transform Bird Street in central London. This has been turned from a previously underutilised outdoor space located off Oxford Street, into a haven of calm where visitors can relax and experience a high street of the future.

 

bird street london pavegen
Bird Street in central London, before and after. Credit: PaveGen

 

PaveGen installed a 10 sq m (107 sq ft) array of tiles at this location. Each footstep is able to produce an average of three joules – enough to play recordings of bird sounds during the day, while providing ambient lighting in the evening, for an immersive visitor experience. Bluetooth transmitters are also incorporated on the walkway, enabling passers-by to interact with branded apps – for example, rewarding users with discounts, vouchers and education resources for their steps on the PaveGen system. A data feed on the hourly footfall and power generation is available too.

Laurence Kemball-Cook, CEO and founder of PaveGen, commented: "With installations in Washington DC and vital transport hubs including Heathrow, being able to demonstrate how our technology can bring to life the retail shopping experience is a vital step for us. As retailers compete with online, technologies like ours make being in the busy high street more exciting and rewarding for people and brands alike."

 

pavegen

 

Joining PaveGen at Bird Street is Airlabs' ClearAir bench (pictured below), which removes nitrogen dioxide to create a large "bubble" of clean air. According to the Airlabs website, the volume of air filtered by this bench every day is enough to fill more than 100 double decker buses, yet only a small amount of energy is required to do this. The Airlabs clean air system has previously been demonstrated at three bus stop shelters in central London.

Also featured in the new-look Bird Street is coatings company Airlite, who created a paint that purifies the air from nitrogen dioxide, bacteria and other particulate matter. This reduces overall pollution by almost 90% and removes 99.9% of germs, moulds and odours. This coating was applied to the surfaces of the retail units.

With the integration of these green technologies, Bird Street demonstrates the potential for more sustainable destinations in busy urban environments. Pollution is currently a major problem in London, with levels of NO2 near Oxford Street at almost 60 µg/m3, compared to the World Health Organisation's recommended safe exposure limit of 40 µg/m3.

 

airlabs clean air bench bird street london
Airlabs' ClearAir bench. Credit: Airlabs

 

Steven Medway, Managing Director of Trading Environment, New West End Company, said: "Visitors to London's West End expect the ultimate shopping and dining experience and they won't be disappointed. Transforming Bird Street will bring a world first offer to the West End, a space where fashion meets technology with brands set to transform the future of retail as we know it."

Alex Williams, Director of City Planning at Transport for London, said: "It's great to see an innovative 'smart street' scheme delivered on Bird Street, the concepts and ideas of which could easily be adapted across London. I hope we can see further examples of this innovative 21st Century thinking in the future as we work to transform Oxford Street and the surrounding area to make it a world-class public space for all."

 

bird street london
Credit: PaveGen

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

1st July 2017

Climate change will increase inequality in the USA

Unmitigated climate change will exacerbate inequality in the USA, with southern states losing up to 20% of their income by century's end.

 

climate change inequality usa 2100

County-level annual damages in the median scenario for 2080 to 2099.

 

Unmitigated climate change will make the USA poorer and more unequal, according to a study published yesterday in the journal Science. The poorest third of counties could sustain economic damage costing as much as 20 percent of their income if warming proceeds unabated.

States in the South and lower Midwest, which tend to be poor and hot already, will lose the most, with economic opportunity traveling northward and westward. Colder and richer counties along the northern border and in the Rockies could benefit the most as health, agriculture and energy costs are projected to improve.

Overall, the study – led by Solomon Hsiang of the University of California, Berkeley, Robert Kopp of Rutgers University-New Brunswick, Amir Jina of the University of Chicago, and James Rising, also of UC Berkeley – projects losses, economic restructuring and widening inequality.

"Unmitigated climate change will be very expensive for huge regions of the United States," said Hsiang. "If we continue on the current path, our analysis indicates it may result in the largest transfer of wealth from the poor to the rich in the country's history."

 

climate change usa economic damage graph trend 2050 2100

 

The pioneering study used state-of-the-art statistical methods and 116 climate projections developed by scientists around the world to price the impacts of climate change the way the insurance industry or an investor would – comparing risks and rewards. A team of economists and climate scientists computed the real-world costs and benefits: how agriculture, crime, health, energy demand, labour and coastal communities are likely to be affected by higher temperatures, changing rainfall, rising seas and intensifying hurricanes.

"In the absence of major efforts to reduce emissions and strengthen resilience, the Gulf Coast will take a massive hit," said Kopp, a professor of Earth and Planetary Sciences at Rutgers. "Its exposure to sea-level rise, made worse by potentially stronger hurricanes, poses a major risk to its communities. Increasingly extreme heat will drive up violent crime, slow down workers, amp up air-conditioning costs, and threaten people's lives."

By 2100, economic damage in the poorest regions could be "many times larger" than the Great Recession and be permanent, according to the study, based on a projected rise of 3-5°C (6-10°F) above pre-industrial temperatures.

"The 'hidden costs' of carbon dioxide emissions are no longer hidden, since now we can see them clearly in the data," said Jina, a postdoctoral scholar in the department of economics at the University of Chicago. "The emissions coming out of our cars and power plants are reshaping the American economy. Here in the Midwest, we may see agricultural losses similar to the Dustbowl of the 1930s."

 

climate change usa economic damage graph trend 2050 2100

 

The study is the first of its kind to price warming using data and evidence accumulated by the research community over decades. From this data, the team estimates that for each one degree Fahrenheit (0.55°C) increase in global temperatures, the U.S. economy loses about 0.7 percent of Gross Domestic Product, with each degree of warming costing more than the last. This metric can help the country manage climate change as it does other systematic economic risks – for example, the way the Federal Reserve uses interest rates to manage the risk of recession.

"We could not have done this study without the ongoing revolution in big data and computing," said Rising, a Postdoctoral Fellow at UC Berkeley, describing the 29,000 simulations of the economy run for the project. "For the first time in history, we can use these tools to peer ahead into the future. We are making decisions today about the kinds of lives we and our children want to lead. Had the computing revolution come twenty years later, we wouldn't be able to see the economic hole we're digging for ourselves."

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

30th June 2017

Rising seas could result in 2 billion refugees by 2100

Research by Cornell University suggests that rising sea levels will displace 1.4 billion people by 2060 and 2 billion by 2100.

 

future timeline rising sea levels 2060 2100
Credit: EQRoy

 

In the year 2100, up to 2 billion people – nearly a fifth of the world's population – could become climate change refugees due to rising ocean levels. Those who once lived on coastlines will face displacement and resettlement bottlenecks as they seek habitable places inland, according to Cornell University research.

"We're going to have more people on less land – and sooner than we think," said lead author Charles Geisler, professor emeritus of development sociology at Cornell. "The future rise in global mean sea level probably won't be gradual. Yet few policy makers are taking stock of the significant barriers to entry that coastal climate refugees, like other refugees, will encounter when they migrate to higher ground."

Earth's ballooning population is expected to reach 9.8 billion by 2050 and 11.8 billion by 2100, according to the latest UN report. Feeding that population will require more arable land even as swelling oceans consume fertile coastal zones and river deltas, driving people to seek new places to dwell.

By 2060, about 1.4 billion people could be climate change refugees, according to the paper. Geisler extrapolated that number to 2 billion by 2100.

"The colliding forces of human fertility, submerging coastal zones, residential retreat, and impediments to inland resettlement are a huge problem. We offer preliminary estimates of the lands unlikely to support new waves of climate refugees due to the residues of war, exhausted natural resources, declining net primary productivity, desertification, urban sprawl, land concentration, 'paving the planet' with roads and greenhouse gas storage zones offsetting permafrost melt," Geisler said.

The paper describes tangible solutions and proactive adaptations in places like Florida and China, which coordinate coastal and interior land-use policies in anticipation of weather-induced population shifts. Florida has the second-longest coastline in the United States, and its state and local officials have already planned for a coastal exodus, Geisler said, in the state's Comprehensive Planning Act.

Beyond sea level rise, low-elevation coastal zones in many countries face intensifying storm surges that will push sea water further inland. Historically, humans have spent considerable effort reclaiming land from oceans, but now live with the opposite – the oceans reclaiming terrestrial spaces on the planet," said Geisler. In their research, Geisler and Currens explore a worst-case scenario for the present century.

The authors note that the competition of reduced space that they foresee will induce land-use trade-offs and conflicts. In the United States and elsewhere, this could mean selling off public lands for human settlement.

"The pressure is on us to contain greenhouse gas emissions at present levels. It's the best 'future proofing' against climate change, sea level rise and the catastrophic consequences likely to play out on coasts, as well as inland in the future," said Geisler.

The article "Impediments to inland resettlement under conditions of accelerated sea level rise" will be published in the July issue of the journal Land Use Policy but is already available online.

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

10th June 2017

Record-breaking year for renewable energy

As the price of installation continues to fall, renewable power has set another new record, with 161 gigawatts (GW) being added in 2016 – increasing total global capacity to more than 2 terawatts (TW).

 

renewable energy technology future timeline

 

Renewable Energy Policy Network for the 21st Century (REN21) this week published its Renewables 2017 Global Status Report (GSR), the most comprehensive annual overview of the state of renewable energy.

The report finds that additions of installed renewable power capacity set new records in 2016, with 161 gigawatts (GW) added, increasing total global capacity by almost 9% over 2015, to nearly 2,017 GW. Solar PV accounted for about 47% of capacity added, followed by wind power at 34% and hydropower at 16%.

In a growing number of countries, renewables are becoming the least cost option. Recent deals in Denmark, Egypt, India, Mexico, Peru and the UAE saw renewable electricity being supplied at $0.05 per kilowatt-hour or less. This is well below equivalent costs for fossil fuel and nuclear generating capacity in each of these countries. Auctions are increasingly able to rely only on the wholesale price of power, without the need for government subsidies.

 

renewable energy technology future timeline

 

The inherent need for "baseload" is a myth, according to the report. Integrating large shares of variable renewable generation can be done without fossil fuel and nuclear baseload with sufficient flexibility in the power system – through grid interconnections, sector coupling and enabling technologies such as ICT, storage systems, electric vehicles and heat pumps. This sort of flexibility not only balances variable generation, it also optimises the system and reduces generation costs overall. It should come as no surprise, therefore, that the number of countries successfully managing peaks approaching or exceeding 100% electricity generation from renewable sources is on the rise. In 2016, Denmark and Germany, for example, successfully managed peaks of renewables-based electricity of 140% and 86.3%, respectively.

Global CO2 emissions from fossil fuels and industry remained stable for a third year in a row, despite 3% growth in the global economy and an increased demand for energy. This can be attributed mainly to the decline of coal, but also to the rapid growth in renewable energy capacity and improvements in energy efficiency.

 

global emissions future timeline

 

Other positive trends include:

Innovations and breakthroughs in storage technology, which increasingly provide additional flexibility to the power system. In 2016, around 0.8 GW of new advanced energy storage became operational, bringing the year-end total to 6.4 GW. As shown in the graph below, grid-connected battery storage grew by 50% to over 1.7 GW.

Markets for mini-grids and stand-alone systems are evolving rapidly, and Pay-As-You-Go (PAYG) business models, supported by mobile technology, are now exploding. In 2012, investments in PAYG solar companies amounted to only $3 million; by 2016 that figure had risen to over $223 million (up from $158 million during 2015).

"The world is now adding more renewable power capacity each year than it adds in new capacity from all fossil fuels combined," says Arthouros Zervos, Chair of the REN21. "One of the most important findings of this year's GSR, is that holistic, systemic approaches are key and should become the rule rather than the exception. As the share of renewables grows, we will need investment in infrastructure as well as a comprehensive set of tools: integrated and interconnected transmission and distribution networks, measures to balance supply and demand, sector coupling (for example the integration of power and transport networks); and deployment of a wide range of enabling technologies."

 

battery storage technology trend


Despite these encouraging trends, however, the energy transition is not happening fast enough. To achieve the goals of the Paris Agreement, an even greater acceleration of clean tech will be required. Investment continues to be heavily focused on wind and solar PV – however, all renewable energy technologies need to be deployed in order to keep global warming below 2°C.

Transport, heating and cooling sectors continue to lag behind the power sector. The deployment of renewable technologies in the heating and cooling sector remains a challenge in light of the unique and distributed nature of this market. Renewables-based decarbonisation of the transport sector is not yet being seriously considered, or seen as a priority. Despite a significant expansion in the sales of electric vehicles, primarily due to the declining cost of battery technology, much more needs to be done to ensure that sufficient infrastructure is in place and that they are powered by renewable electricity. While the shipping and aviation sectors present the greatest challenges, government policies or commercial disruption have not sufficiently stimulated the development of solutions.

Fossil fuel subsidies continue to impede progress. Globally, subsidies for fossil fuels and nuclear power continue to dramatically exceed those for renewable technologies. By the end of 2016, more than 50 countries had committed to phasing out fossil fuel subsidies, and some reforms have occurred – but not enough. The ratio of fossil fuel subsidies to renewable energy subsidies is 4:1. For every $1 spent on renewables, governments spend $4 perpetuating our dependence on fossil fuels.

Christine Lins, Executive Secretary of REN21, explains: "The world is in a race against time. The single most important thing we could do to reduce CO2 emissions quickly and cost-effectively, is phase-out coal and speed up investments in energy efficiency and renewables. When China announced in January that it was cancelling over 100 coal plants currently in development, they set an example for governments everywhere: change happens quickly when governments act by establishing clear, long-term policy and financial signals and incentives."

 

Click to enlarge

 

  solar   wind  

 

---

• Follow us on Twitter

• Follow us on Facebook

• Subscribe to us on YouTube

 

  speech bubble Comments »
 

 

 

 
     
       
     
   
« Previous  
   
     
   

 
     
 

Blogs

AI & Robotics Biology & Medicine Business & Politics Computers & the Internet
Energy & the Environment Home & Leisure Military & War Nanotechnology
Physics Society & Demographics Space Transport & Infrastructure

 

 

Archive

2015

 

2014

 

2013

 

2012

 

2011

 

2010

 

 
 
 
 

 


future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Privacy Policy