future timeline technology singularity humanity
 
   
future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed
 
     
     
 
       
 
 
 

13th November 2016

Lab-grown mini lungs successfully transplanted into mice

Scientists can now grow 3-D models of lungs from stem cells, creating new ways to study respiratory diseases.

 

lungs

Credit: Briana R Dye, Priya H Dedhia, Alyssa J Miller, Melinda S Nagy, Eric S White, Lonnie D Shea, Jason R Spence

 

Researchers at the University of Michigan have transplanted lab-grown mini lungs into immunosuppressed mice where the structures were able to survive, grow and mature.

"In many ways, the transplanted mini lungs were indistinguishable from human adult tissue," says senior study author Jason Spence, Ph.D., associate professor in the Department of Internal Medicine and the Department of Cell and Developmental Biology at U-M Medical School.

The findings were published in eLife and described by authors as a potential new tool to study lung disease.

Respiratory diseases account for nearly 1 in 5 deaths worldwide, and lung cancer survival rates remain poor despite numerous therapeutic advances during the past 30 years. The numbers highlight the need for new, physiologically relevant models for translational lung research.

Lab-grown lungs can help because they provide a human model to screen drugs, understand gene function, generate transplantable tissue and study complex human diseases, such as asthma.

Lead study author Briana Dye, a graduate student in the U-M Department of Cell and Developmental Biology, used numerous signalling pathways involved with cell growth and organ formation to coax stem cells – the body's master cells – to make the miniature lungs.

The researchers' previous study showed mini lungs grown in a dish consisted of structures that exemplified both the airways that move air in and out of the body, known as bronchi, and the small lung sacs called alveoli, which are critical to gas exchange during breathing.

But to overcome the immature and disorganised structure, the researchers attempted to transplant the miniature lungs into mice, an approach that has been widely adopted in the stem cell field. Several initial strategies to transplant the mini lungs into mice were unsuccessful.

Working with Lonnie Shea, Ph.D., professor of biomedical engineering at the University of Michigan, the team used a biodegradable scaffold, which had been developed for transplanting tissue into animals, to achieve successful transplantation of the mini lungs into mice. The scaffold provided a stiff structure to help the airway reach maturity.

"In just eight weeks, the resulting transplanted tissue had impressive tube-shaped airway structures similar to the adult lung airways," says Dye.

They characterised the transplanted mini lungs as well-developed tissue, possessing a highly organised epithelial layer lining the lungs. One drawback was that the alveolar cell types did not grow in the transplants. Still, several specialised lung cell types were present, including mucus-producing cells, multiciliated cells and stem cells found in the adult lung.

---

• Follow us on Twitter

• Follow us on Facebook

 

  speech bubble Comments »
 

 

 


 

comments powered by Disqus

 

« Previous Next »
 
     
   

 
     
 

Blogs

AI & Robotics Biology & Medicine Business & Politics Computers & the Internet
Energy & the Environment Home & Leisure Military & War Nanotechnology
Physics Society & Demographics Space Transport & Infrastructure

 

 

Archive

2015

 

2014

 

2013

 

2012

 

2011

 

2010

 

 
 
 
 

 


future timeline twitter future timeline facebook group future timeline youtube channel account videos future timeline rss feed

Privacy Policy